Intergovernmental Oceanographic Commission

Workshop Report No. 103

IOC Workshop on Geographic Information Systems Applications in the Coastal Zone Management of Small Island Developing States

Organized in co-operation with and supported by the Government of Canada

Barbados, W.I. 20-22 April 1994

UNESCO

Page

TABLE OF CONTENTS

EXE	ECUTIV	E SUMMARY iv		
1.	INTRODUCTION 1			
	1.1	Background 1		
	1.2	Modus operandi for the Workshop 1		
2.		CAL ZONE MANAGEMENT (CZM) FOR SMALL ISLAND DEVELOPING STATES (SIDS) S AND CHALLENGES 2		
3.	APPLICATIONS OF GEOGRAPHIC INFORMATION SYSTEMS (GIS) TECHNOLOGY 2			
	3.1	IOC experience and views on marine data and information management in support of CZM systems for SIDS		
	3.2	GIS methods and coastal zone management 3		
	3.3	GIS data acquisition strategies		
	3.4	Remote sensing and coastal zone data acquisition and analysis 4		
	3.5	Coastal zone management in Barbados with GIS 5		
	3.6	Desktop delivery systems for coastal zone information 5		
	3.7	GIS dynamic modelling in CZM 5		
	3.8	Information technology development directions		
4.	TECHN	NICAL CHALLENGES OF USING GIS IN SIDS		
5.	HOW 1	TO PROMOTE AND IMPLEMENT THE USE OF GIS IN DECISION-MAKING FOR CZM 7		
	5.1	Promotion of GIS		
	5.2	Capacity building		
	5.3	Training and education		
6.	SUGGI	ESTED PLAN OF ACTION		

7.	RECOMMENDATIONS	9
8.	CONCLUSION	9

ANNEXES

- I. Welcome comments from the IOC (P. GEERDERS)
- II. List of participants
- III. Opening remarks (J. ZUKOWSKY)
- IV. Final agenda
- V. Remarks for the opening panel discussion (G. GARCIA)
- VI. CZM in Barbados The Coastal Conservation Unit (L. NURSE)
- VII. IOC experience and views on Marine Data and Information Management in support of CZM systems for SIDS (P. GEERDERS)
- VIII. GIS Methods and Coastal Zone Management (M. ARNO)
- IX. GIS data acquisition strategies (P. GROSE)
- X. Remote sensing and coastal zone data acquisition and analysis (B. RYERSON AND C. BJERKELUND)
- XI. GIS In CZM: Barbados' experience (K. ATHERLEY)
- XII. GIS applications in coastal management: information for decisions (P. GROSE)
- XIII. GIS dynamic modelling in CZM (G. ENGELEN AND R. WHITE)
- XIV. Relevant technology development directions for small island states (G. MAFFINI)
- XV. Current status and future development of remote sensing and GIS at the South Pacific Applied Geoscience Commission
- XVI. Concluding remarks (HON. H. LEWIS)

EXECUTIVE SUMMARY

BACKGROUND

Some 35 scientists and coastal zone managers representing 18 Small Island States and Non-Governmental Organizations (NGOs) from around the worl d met for 3 days, from April 20-22, 1994 in Barbados, to explore potential applications of Geographic Information Systems (GIS) in t he management of the coastal zone of Small Island Developing States (SIDS) to ensure their sustainabl e development. The Workshop was co-sponsored by the Intergovernmenta l Oceanographic Commission (IOC) and the Government of Canada.

GIS constitutes a powerful management tool as it is a computer-base d system integrating as much information as po scientific, social, cultural, and economic d managing their coastal zone in a proactive f of an often complex situation, and can be applied to most areas of relevance to sustainable development.

Sustainable development in SIDS, and in particular Integrated Coastal Zone Management (ICZM), can benefit greatly from the application of Geographi c Information Systems (GIS), because GIS technology has the capability t o integrate large amo unts of data as well as the flexibility to accomodate the diverse ICZM needs of SIDS.

TECHNOLOGY OF GIS

The judicious use of GIS in ICZM will allow better quality output an d decision-making at reduced costs, as the technology allows better allocation of limited financia 1 and human resources, which is an essential prerequisite for sustainable development in SIDS. For example, remotely sensed dat a integrated through GIS offer the potential f or satisfying multiple needs from a common data collection effort over wide areas.

GIS technology requires the sharing of data between SIDS and othe r countries as well, improved communications, training, and syste m compatibility. It is important that the origin of data be documented so that it can be verified and shared. Also, planning for new data collection should consider using standards to facilitate future data exchange.

Telecommunications are of critical importance for the transfer of dat a from remote data ba ses at local, regional and international sites. Improved communications will also enhance training, as well as facilitate the rapi d interchange of knowledge, problem solving at the technical and operationa l decision-making levels, and the sharing of expertise at all levels.

CAPACITY BUILDING

A regional core of marine, coastal and social scientists, engineers an d planners as well as multi-disciplinary technical support familiar wit h the use of GIS is needed for ICZM. ICZM requires comprehensive planning by SIDS to define their long-term objectives and needs. These include the ident ification of management objectives, the setting of standards, the design of dat a collection and monitoring systems, as well as the identification of GI S technologies appropriate to the situation of given SIDS.

Through education and training, the expertise in the use of GIS must be developed in SIDS. Moreover, this will lead to SIDS involvement at a ll levels in the development of GIS technology and applications best suited to the needs of small islands.

Furtherm ore, GIS technology can assist in promoting awareness at al levels of SIDS soci eties, from children to scientists to decision-makers, so that all can be educated on the protection, restoration, enhancement, an d utilization of the coastal zone of their islands.

IOC Workshop Report No. 103 page (iv)

PLAN OF ACTION

Given the potential of GIS as an appropriate tool in ICZM for SIDS Workshop participants suggested that a plan of action be developed for SIDS with regards to the use of GIS, comprising the following elements:

National initiatives

- undertake on an accelerated basis, in all SIDS that have not don e so, a detailed assessment of needs f or implementing an ICZM program utilizing GIS technology support;
- (ii) develop and strengthen the national capacity for using GIS in ICZM on a continuing basis;
- (iii) ensure that data and information from existing facilities ar e accessible to GIS systems for ICZM;
- (iv) support the implementation of sustainable ICZM programs b y organizing/facilitating continuing public awareness activities o n GIS and their potential.

Regional initiatives

- (i) improve interregional telecommunication networks;
- (ii) assist SIDS in their efforts to conduct ICZM programs using GIS;
- (iii) organize/facilitate regular regional training activities on G IS data acquisition and technology, making u se of the strengths of existing regional centres of excellence;
- (iv) establish modalities to ensure the c ompatibility of GIS systems for ICZM related activities.

International initiatives

- (i) request IOC to organize GIS awarenes s workshops for decision-makers in SIDS, in collaboration with international development agencies, UN organizations and other NGOs;
- (ii) improve communication systems into SIDS to enhance internationa l coordination and cooperation in GIS development and standardization and exchange of data;
- (iii) support locally driven projects aimed at demonstrating the usefulnessand economic viability of GIS and remote sensing in ICZM.

RECOMMENDATIONS

In light of this plan of action, Workshop participants formulated th e following recommendations:

- (i) IOC should organize regional workshops to ensure training of SID S personnel in the use of the most appropriate GIS technology i n ICZM.
- (ii) IOC should promote state-of-the-art telecommunications amongst SIDS and other countries.
- (iii) IOC and other international agencies and aid agencies should support SIDS in putting on projects demonstrating the usefulness an d economic advantages of using GIS and remote sensing in ICZM.

1. INTRODUCTION

IOC Workshop Report No. 103

1.1 <u>Background</u>

The United Nations Confe rence on Environment and Development (UNCED), which took place in Rio de Janeiro i n June 1992, recognized in Agenda 21, the programme of action it adopted, the challenges posed by th e sustainable development of Small Islands developing states (SIDS) . Indeed, the economy of SIDS very often depends mostly on their coasta l areas, which display vulnerability towards tropical storms, sea-leve l rise, and invasions by foreign species among others. Thus, t he UN General Assembly decided at its 47th session to convene a Global Conf erence on the Sustainable Development of Small Island Developing States, to be held in Barbados, starting April 25, 1994.

UNESCO and the IOC provided support and input to various activitie s preparatory to the Barbados conference. In direct response t o

recommend ations contained in section G of chapter 17 of Agenda 21 , concerning the use of Geographic Inf ormation Systems (GIS) in the coastal zone management of small islands, the IOC (see Annex I containing th e welcoming comments from IOC) in asso ciation with the Government of Canada decided to sponsor a Workshop on GIS Applications in the Coastal Zon e Management of Small Island Developin g States, under the responsibility of IOC First Vice-chairman, Geoff Holland.

So as to be in a better position to channel recommendations to the global conference on SIDS, it was decided to hold the GIS Workshop in Barbados as well, in the week preceding the Conference. Canada, through Geoff Holland, took charge of the workshop organization: Jean Piuze wa appointed a s workshop chairman, Giulio Maffini as technical coordinator, and Darren Williams as administrative coordinator.

Financial support for the Workshop was provided by the IOC and the Government of Canada, including the Canadian International Development Agency (CIDA) and the departments of Foreign Affairs and Fisheries and Oceans, for salaries, travel, accomo dation and workshop facilities at Sam Lord's Castle in Barbados.

Some 35 scientists and coastal zone managers representing 18 Smal 1 Island States and Non-Governmental Organizations from around the worl d thus met from April 20 to 22, 1994, in Barbados to explore potentia 1 applications of GIS in the management of the coastal zone of SIDS t o ensure their sustainable development. The list of participants is given in Annex II.

1.2 <u>Modus operandi for the Workshop</u>

The primary objective of the Workshop was to obtain reactions an d comments from SIDS representatives following technical presentations b comments from SIDS representatives forthering. This point w as reitera experts on GIS technology and its applications. This point w as reitera by Ms. Janet Zukowsky, High Commissioner for Canada to Barbados and th Eastern Caribbean, in her opening remarks (see Annex III). The forma У This point w as reiterated e t chosen aime d at fostering as much discussion as possible. days included panel discussions involving SIDS representatives at the start and at the close of each day. Four technical presentations wer given in between on each of the two days, each followed by a period o questions and discussion. At the end of the first two days, time wa e e f s reserved for hands-on sessions where participants could interact wit h On the third day, three breakout sessions were formed to come experts.

up with the input and recommendations destined to form the Worksho p report, following plenary discussion. Annex IV gives the age nda followed.

2. COASTAL ZONE MANAGEMENT FOR SIDS - ISSUES AND CHALLENGES

Coastal zone management (CZM) for SIDS can be extremely complex wit h environmental protection, sustainable development, resource and land use , population pressure, and global change all entering the equation. Vas t numbers of data, including scientific, social, cultural, and economic data, are required to assist decision-makers in managing their coastal zone in a proactive fashion. Thus, powerful and versa tile tools are required to handle these data and to bring them into a form sui table for practical use. This is where GIS can prove invaluable.

The initial panel discussion at the workshop highlighted the importanc e and the complexity of CZM for the sustainable e development of SIDS. Guillermo Garcia (Cuba) reminded participants that SIDS are in fact mostly made up of coastal marine area s, including important natural resources such as beaches, coral reefs, and mangroves. These are usually y quite vulnerable to natural and anthropogenic factors affecting the environment. Thus the establishment of a plan of action for research and monitoring in the coastal zone is essential. Regulatory measures and coordination mechanisms for CZM must also be put in place. And all of these should be conducted in a context of internationa 1 cooperation and capacity building, taking into account the reality of the present economic situation. All these points are detailed in Annex V.

The example of the establishment of a CZM programme by a SIDS was presented by Leonar d Nurse (Barbados). It was shown that the first step was to assess the needs by identifying critical issues facing the coastal zon e (e.g. beach erosion, water pollution, reef degradation, habitat loss). This in turn provided the basis for determining requirements in terms of data and monitoring as well as the funding necessary for the equipment and personnel and training needed for the establishment of a Coastal Conservation Unit (CCU). At every stage of the process, the need for an adequate dat a management system w as obvious and it was clear that a functional GIS was the best way to achieve this. Annex VI explains why and how the Barbados CCU was set up, and gives a summary of its nature and function.

Hence, it appears that sustainable d evelopment in SIDS, and in particular Integrated Coastal Zone Management (ICZM), can benefit greatly from th e application of GIS technology because it has the capability to integr ate large amounts of data as well as the flexibility to accomodate the diverse ICZ M needs of SIDS.

3. APPLICATIONS OF GIS TECHNOLOGY

In order for SIDS representatives to appreciate the broad range o f possibilities offered by GIS technology for CZM, eight presentations wer e given by GIS experts covering the IOC experience on coastal zone dat a management, principles and strategies for GI S applications in CZM, the use of remote sensing, case studies, GIS dynamic modelling, and the future o f GIS and information technologies. Each presentation is summarized in the following paragrap hs, while detailed presentations are to be found in annexes VII t o XIV.

3.1 <u>IOC experie nce and views on marine data and information management</u> in support of CZM systems for SIDS (Paul Geerders)

GIS technologies provide a means to an end. In establishing and utilizing these technologies, however, one must focus on, and keep in mind, what the goal of their use is, and what is required to make them function n appropriately. At the centre of the application of a GIS system for coastal zone management should be the "consumer" of the products to be generated. In

developing an effec tive and useful GIS system primary concern must be placed on determining what the consumer wants from the system and how to best set up the system to meet their needs. The second focus must be on the dat a requirements of the system and whether these can be adequately met. T o

function effectivel y, a continuous and consistent stream of data is required from three sources including: in-situ data, remotely sensed data, and dat a from numerical models. GIS systems act as an excellent carrier to combine, evaluate, and present large amounts of diffe rent types of data. This relates closely to the IOC concept for a world-wide system for operational ocea n observations GOOS (Global Ocean Observing System). To enhance accessibility to marine data, the IOC has developed a number of programs to facilitate the collection and exch ange of standardized data on the marine environment. The IOC is likewise capable of providing training in marine data management , marine information management, and remote sensing for marine application s through individual and regional training cou rses to promote the effective use of information by end-users. Annex VII gives the detailed presentation.

3.2 GIS methods and coastal zone management (Michael Arno)

GIS is a new model for understanding complex real world systems. A n extension of existing geographic models, GIS developed with the advent o f electronic data systems to become a powerful vehicle for informatio n management and decision support. GIS now offers an ideal way to repr esent and build an understand ing of complex coastal systems. Functions of GIS include allowing decision m akers to visualize, organize, combine and analyze data as well as to make predictions and to interrogate data to provide answers.

GIS functions through a five step input-output process, beginning wit h data input into a system of data management, data processing, analysis an d modelling, and endi ng with data output. Data input includes the capture and integration of spatial and non-spatial data from a variety of source s including paper map s, aerial photographs, satellite images and other sources of data acquisition. Data is then digitized or scanned and often combine d with existing digital data to build useable data bases of information . Representations of data in the GIS can be sp atial, thematic, temporal or take the form of spatial data models. Visualizat ion or appearance of the data can be affected by the scale of the image, the type of generalization use d (simplification, classification, symbolization or induction), the car tographic process, and the accuracy.

Data management involves the integration of a data base manag ement system, with input from spatial and/or tabular data bases, with geographic object s including geographic features and entities. Data management issues include security, integrity, filing, access, maintenance, and currency. Dat a processing includes the transformation of projection and coordinate systems data onto a two-dim ensional plane surface and the conversion of spatial data into points, lines, areas, networks, and surfaces. Once the data i s processed, GIS allo ws for both qualitative and quantitative analysis through a variety of tools including overlays, query , measure and proximity. Finally, modelling is an advanced form of overlay analysis. Modelling can b e undertaken through the generation of maps from existing maps and data bases, through the comparison of information tempor ally, or through extrapolation of data. A copy of this presentation is included as Annex VIII.

3.3 <u>GIS data aquisition strategies (Peter Grose)</u>

Strategies for geographic data development can be achieved for efficient and effective coastal resource management, even given limited budgets , personnel and data availability. A realistic and usable GIS starter system could include two personal computers, a laser printer and page size colou r printer, a scanner and software, GIS software and geographic data. Tota 1 resource costs equa 1 \$25-35 k and a resource staff of 4-5 persons, including a GIS specialist, a GIS operator and 2-3 technicians.

Data preparation includes the use of generic tools and editing operations for quality control and data maintenance as opposed to data delivery whic h focusses on presentation. Components of a d ata layer include data attributes and the location of data as represented by points, vectors and polygo ns. Each can be managed independently to reflect reality. When choosing a system , tradeoffs must be made in terms of system design and construction including the breadth of scope, available information (data), scale, and accura cy. Data collection for the building and maintaining of coastal zone data bases is an iterative process n ot a one-time operation. Once a problem has been defined and decision criteria developed, assessment of data requirements an d availability, as well as the assembly and an alysis of data must be undertaken to make effective management decisions. Efficient and cost-effective dat a development or acquisition techniques includ e: adapting existing digital data sets; table digitizing of hard copy maps; scanning, head-up digitizing an

autovectorizing; up dating from photographic or remote imagery; and real-time digitizing using GPS.

In choosing a data collection and preparation system one must conside r that most effort and expenses will be devote d to data collection, editing and the synthesizing of data into usable information. One must be careful t o design and focus on a particular set of decisions that will reduce co sts. The assessment of needs is critical. Each information layer in a system needs a specific plan for data generation and maintenance. Finally, alternative s exist and should be considered in the design of a useful system. Beware , however, of techniques that become resource traps. The complete presentation can be found in Annex IX.

3.4 <u>Remote sens ing and coastal zone data acquisition and analysis (Bob</u><u>Ryerson)</u>

Remote sensing is the collection of natural resources information usin g imagery acquired from aircraft or spacecraft. To be useful the phenomen a under observation must be understood, spatially manifested at the ima ge scale, verifiable and visible. Remote sensing uses reflected or emitte d electromagnetic radiation using either passive or active sensors . Interpretation variables include: colour, tone, brightness, shape, texture, pattern, context/juxtaposition, shadow, and size. Remote sensing i s particularly useful to obtain information in hostile or hard to reach areas and to quickly provide similar information over large areas; is less costly than traditional field-based methods; can provide a permanent record and is useful to obtain a quantitative record. Inc reasing fiscal restraint combined with additional demands for environmental information suggests that remot e sensing will be mor e widely used in the future. Remote sensing tools of the trade involve the use of a wide variety of c ollection platforms, sensors, and methods of data analysis including the use of GIS.

Satellite i magery, as opposed to aerial photography, is a cost-effective means of providing information on large areas with a 10 to 30 metr e resolution. It provides a good overview of features such as land cover , vegetation conditions, water bodies, forest clear cuts, roads, topogr aphic and other map updates. Remote sensing use inclu des a variety of natural resource applications including coastal zone management. Different sensors ar e capable of providing different information about the coastal environment . Photographic and digital MSS are capable of providing information on wate r quality and pollution monitoring by depicting changes in the visibl e environment. Infrared line scanning devices can detect thermal plum e discharges and other heat sources. Syntheti c aperture radars can display oil spills on water, the effects of erosion and other natural and man-mad e landscape changes and thus can be useful in shoreline and land use mapping. Finally, remote sen sing can also be useful in local environmental monitoring by providing an updatable permanent record. The content of the slides used for this presentation is shown in Annex X.

3.5 <u>GIS in coastal zone management: Barbados experience (Kennet h</u><u>Atherley)</u>

Integrated CZM in Barbados began with a 1983-84 Prefeasibility Study i n Coastal Conservation including a diagnosis of problems, the suggestion o f possible solutions, and an initiation of monitoring of beaches and reefs . From 1983 to the present the Coastal Conservation Unit was developed t o continue monitoring, advise on coastal development and develop projec t preparation work. From 1991 to 1995 a Technical Feasibility Study is being carried out to study coastal processes and trends through expanded an d concentrated monito ring, to develop a CZM plan for the Island, and to design and test specific physical engineering projects.

GIS was introduced in Barbados to manage and make useful the large amounts of data being produced as a result of the technical feasibility study. GIS was conceived as being a useful tool for combining temporal and spatia 1 databases for discerning various permutations of associations and for r assessing the potential for quantitative modelling. GIS met the dat a management needs of the CCU which included the storage and analyses of large volumes of data from numerous locations. Features of the Coastal Con servation Unit's GIS include AUTOCAD, ARCAD, ARCVIEW, and associated PC hardwar e capable of running the system. GIS issues for those interested in developing their own system include : georeferencing stan dards and map scales; vector and raster models; a need to consider user applications including storing data, developing new per spectives and/or permutations, and development control and monitoring trends; lineage of data and quality control; and inter-insti tutional support including common ground, general standards, training, avoiding overlaps, cooperation between private and public sectors and who owns the data. Examples of GI S applications for CZM in Barbados include the use of GIS for flood hazar d management, beach access planning, and as a research and engineering design tool for beach changes (erosion, accretion). Each of these example s demonstrates GIS's usefulness as an effective CZM management tool. Th e contents of this presentation can be found in Annex XI.

3.6 <u>Desktop delivery systems for coastal</u> zone information (Peter Grose)

Desktop delivery systems focus on the delivery of information directly to decision-makers. More appropriately described as desktop INFORMATION systems, desktop delivery systems concentrate on providing information tailore d to meet the needs of a spec ific problem or theme. Custom design of delivery systems takes place primarily in the information dev elopment process, but also in the presentation of the information in the produ ct form. Information development including the examination of the themes and issues to translate raw data into user-friendly information is the key to any project of this type. Generic or custom capabilities are used depending on the needs of the consumer. The design of the system, therefore, is a cooper ative effort of many parties, not just the computer or data personnel. Two examples of desktop deliver y systems including a Mid-Atlantic Mapping and Information System and a Coastal Ocean Management, Planning and Assessment (COMPAS) for Florida were presented t o demonstrate the utility of these systems. The details are given in A nnex XII.

3.7 GIS dynamic modelling in CZM (Guy Engelen and Roger White)

Cellular automata provide the key to a dynamic modelling and simulatio n framework that inte grates socio-economic with environmental models, and that operates at both micro and macro geographica l scales. An application to the problem of forecasting the effect of climate change on a small island state suggests that such modelling techniques coul d help planners and policy makers design more effective policies -- policies better tuned both to speci fic local needs and to overall socio-economic and environmental constraints. Thi s presentation can be found in Annex XIII.

3.8 Information technology development directions (Giulio Maffini)

While GIS once ended at the office door new portable technologies hav e allowed for fully functional GIS to be deplo yed to the field. Key technology developments include those aimed at "reducing the cost of where" (acquiring data in the field), capturing data, and using data. Relatively low cost and highly accurate han d held technologies are now available to capture data and enter it into GIS systems. These include portable environmentally tolerant computers (PETCs) t hat are physically tolerant, pen enabled, utilize docking stations, dial up or are wireless capable, GPS attached, and operate on M S WINDOWS field GIS software. Ideal PETC operating environments include al 1 types of vehicles and PETCs can withstand all common elements inherent t o island environments. Wireless computing has significantly improved th e accuracy and efficiency of providing data to build data bases but is stil 1 limited in ability and is costly to operate. Additional technologica 1 improvem ents in the near future, especially in the fields of digital stil 1 photography and voice recognition, will furt her contribute to the development of GIS and the use of information technologi es by small island states. Annex XIV contains the detailed presentation on this topic.

In addition, an information document tabled at the Workshop, on the current status of remote sensing and GIS at the South Pacific Applie d Geoscience Commission (SOPAC) is included as Annex XV as an example of developments taking place in this field in the Pacific.

4. TECHNICAL CHALLENGES OF USING GIS IN SIDS

Workshop participants agreed that, f or using GIS in CZM, needs assessment and strategic planning are essential at the outset. Requirements in data

personnel and equipment must be clearly defined. This will usually mea n different systems for different needs and financial means. Systems must be tailored to the needs, and the biggest, most expensive systems are not always the best choice.

The judicious use of GIS in ICZM will allow better quality output an d decision-making at reduced costs, as the technology allows better allocation of limited financia 1 and human resources, which is an essential prerequisite for sustainable development in SIDS. For example, remotely sensed dat a integrated through GIS offer the potential f or satisfying multiple needs from a common data collection effort over wide areas.

GIS technology requires the sharing of data between SIDS and othe r countries as well, improved communications, training, and syste m compatibility. It is important that the ori gin of data be documented so that it can be verified and shared. Also, planni ng for new data collection should consider using standards to facilitate futur e data exchange. Data management and quality control really constitute key areas.

Pitfalls that SIDS must guard against include incompatible systems , problems in managerial support, software and capital acquisition, lack o f technical help, and limited telecommunications networks. Indeed , telecommunications are of critical importance for the transfer of data from remote data bases at local, regional, and international sites. Improve d communications will also enhance training, as well as facilitate the rapi d interchange of knowledge, problem solving at the technical and operationa l decision-making levels, and the sharing of expertise at all levels.

As a final caveat, it was mentioned that GIS do not incorporate the time dimension very well, and that other tools, such as spatial/temporal m odelling, may be needed to complement them.

5. HOW TO PROMOTE AND IMPLEMENT THE USE OF GIS IN DECISION-MAKING FOR CZM

5.1 <u>Promotion of GIS</u>

While there was general agreement on the potential of GIS technology , workshop participants discussed whether or not it could play an impor tant role in decision-making in the CZM of SIDS. For GIS to become an attractive tool as a decision support system, it was conclud ed that its usefulness first must be sold to decision-makers. GIS must be presented to a certain extent as a "black box", but an efficient management black box which can reflect th e complexity of CZM, and include social, cultural and economic aspects i n addition to scientific data. Adequate marketing strategies are required to foster awareness of the full potential of GIS.

5.2 <u>Capacity building</u>

Even though GIS teams made up of several people would be ideal for r SIDS, the reality of the situation is that human resources are usuall y quite limit ed, and budgets low. Therefore, innovative approaches at the national level are required: the best use must be made of existin g structures and tools through good coordination.

At the regional and intergovernmental level as well, with help from the regional bodies, scarce resource s must be shared. A regional core of marine, coa stal and social scientists, engineers and planners as well as multidisciplinary technical support familiar with the use of GIS is needed for ICZM. ICZM requires comprehensive planning by SIDS to define their r long-term objectives and needs. These include the identification of f management objectives, the setting of standards, the design of dat a collection and monitoring systems, as well as the identification of GI S technologies appropriate to the situation of given SIDS.

Furthermore, communications and information sharing between SID S should be enhanced and used to the f ullest. Data should be exchanged for free, except for commercial applications, and the lineage of data should be recogniz ed. Maximum use of structures (e.g. data centres), tools and standards developed by bodies like the IOC should be made. There als o exist networks with information on small islands which can be queried.

Where developed countries and aid agencies are pr esent, they should be involved in the support of GIS development in SIDS. However, it i s critical that the needs of both dono r and recipient countries be adjusted well so as to avoid difficulties which often stem from differin g expectations by the partners.

5.3 <u>Training and education</u>

In order to implement the use of GIS for the sust ainable management of coastal areas of SIDS, the approach must be multidisciplinary and aime d at all levels in society, including technicians, scientists, managers and politicians. Workshop participants felt that training was of the highest importance in developing the expertise in the use of GIS in SIDS . Technical regional training workshops should be organized as well a s exchanges of trainees.

Regional pilot projects demonstrating the use of GIS technology fo r CZM of SIDS could also be implemented by regional organizations an d regional un iversities to assist SIDS in offering training facilities and in providing the feedback necessary to adjust GIS to their particula r needs.

In addition to training, education is an extremely important targe t for the longer term development of the use of GIS for ICZM in SIDS.

Hence, through education and training, the expert ise in the use of GIS must be developed in SIDS. Moreover, this will lead to SIDS involvement at all levels in the development of GIS technology and applications best suited to the needs of small islands. In this respect, it should be noted that a number of workshop participants felt that the participation of SIDS in different areas of the information industry, in addition to their r technology user role, should be encouraged and promoted.

Finally, GIS technology can assist in promoting awareness at al l levels of SIDS societies, from child ren to scientists to decision-makers, so that all can be educated on the protection, restoration, enhancemen t and utilization of the coastal zone of their islands.

6. SUGGESTED PLAN OF ACTION

Given the potential of GIS as an appropriate tool in ICZM for SIDS Workshop participants suggested that a plan of action be developed for SIDS with regards to the use of GIS, comprising the following elements:

NATIONAL INITIATIVES:

- undertake on an accelerated basis, in all SIDS that have not don e so, a detailed assessment of needs f or implementing an ICZM program utilizing GIS technology support;
- develop and strengthen the national capacity for using GIS in ICZM on a continuing basis;
- ensure that data and information from existing facilities ar e accessible to GIS systems for ICZM;
- support the implementation of sustainable ICZM programs b y organizing/facilitating continuing public awareness activities o n GIS and their potential.

REGIONAL INITIATIVES:

- improve interregional telecommunications networks;
- assist SIDS in their effort to conduct ICZM programs using GIS;
- organize/facilitate regular regional training activities on G IS data acquisition and technology, making u se of the strengths of existing regional centres of excellence;
- establish modalities to ensure the c ompatibility of GIS systems for

ICZM related activities.

INTERNATIONAL INITIATIVES

- request IOC to organize GIS awarenes s workshops for decision-makers in SIDS, in collaboration with international development agencies, UN organizations and other NGOs;
- improve communication systems into SIDS to enhance internationa l coordination and cooperation in GIS development and standardization and exchange of data;
- support locally driven projects aimed at demonstrating the usefulness and economic viability of GIS and remote sensing i n ICZM.

7. RECOMMENDATIONS

In light of this plan of action, Workshop participants formulated th e following recommendations:

- (1) IOC should organize regional workshops to ensure training of SID S personnel in the use of the most appropriate GIS technology in ICZM.
- (2) IOC should promote s tate-of-the-art telecommunications amongst SIDS and other countries.
- (3) IOC and other international agencies and aid agencies should support SIDS in putting on projects demonstrating the usefulness an d economic advantages of using GIS and remote sensing in ICZM.

These recommendations were submitted to the IOC just prior to the star t of the Global Conference on the Sustainable Development of Small Islan d Development States.

8. CONCLUSION

Participants agreed that the technic al information provided on GIS at the Barbados Workshop was extremely valuable. D iscussion between representatives from SIDS and from various agencies showed t hat GIS technology can definitely help SIDS manage their coastal zone. Howeve r, this will be efficient only if needs are assessed at the outset and if plans are tailored to the needs o f SIDS. In this respect, coordination of efforts and cooperation betwe en states and agencies are of the utmost importance.

The potential of GIS applications in ICZM of SIDS is very wel l illustrated by the example of Barbados. This comes across clear in the concludin g remarks (see Annex XVI) given to the Workshop by the Honourable Senator Harcour t Lewis, Barbados Minister of the Environment, Housing and Lands.

Now it is up to SIDS and to their supporting international partners t o take action as required in each country and region.

WELCOME COMMENTS FROM THE INTERGOVERNMENTAL OCEANOGRAPHIC COMMISSION BY PAUL GEERDERS

Ladies and Gentlemen: On behalf of IOC and its Secretary Dr. Gunnar K ullenberg I would like to welcome you to Barbados and to declare that IOC is ver y pleased to be so closely involved in this me eting. This provides an excellent opportunity to contribute to the follow-up and implementation of som e declarations of UNCED and Agenda 21 in relation to Coastal Zone Management.

Because of its intergovernmental character I OC has an excellent relation with the governments of its Member States, with a wide range of international and intergovernmental organizations such as WMO, UNEP and IMO and with relevant NGOS. To further improve the effectiveness of its activities IOC has established a number of regional subcommittees such as IOCARIBE for the e Caribbean and adjac ent regions, WESTPAC for the western Pacific and IOCINDIO for the Central Indian Ocean. This enables I OC to operate more closely to the specific character of a region and to be more effective in meeting regional needs and requirements. Through joint research programmes and capacit y building activities networks have been established which in turn have led to an increased scientific and technical collaboration in the field of t he marine sciences.

The possible effects of world-wide changes in climate and environment ar e relevant to all countries. However they are of particular and often vita l importance for small island states. Furthermore, the increasing press ures from touris m as well as the population expansion and the related needs for mor e food, space and energy are leading to dramatically conflicting interest s specifically in the coastal zone. In view of the present state of the art in computer science and d informatics including Geographic Information Systems we may expect this technology to be able to provide effective tools to support integrated coastal zone management.

In this context, IOC has launched the concept of the Global Ocean Observing System, GOOS. This intends to be a worldwide ocean monitoring system providing data on the oceans alike the present systems such as World Weather Watch in meteorology. Similar systems are the Global Climate Observing System (GCOS) and the Global Terrestrial Observing System (GTOS). National and regiona 1 integrated coastal zone management systems could be considered as coasta 1 modules of GOOS.

One essential and basic element for coastal zone management is the collection, synthesis and sharing of data and information. Recognizing the vita l importance of this field, IOC already more that two decades ago established a world-wide network of national and responsible oceanographic data centres, collaborating closely with each other and with the World Data Centres -Oceanography operating under the International Council of Scientific Unions ICSU. Experts active in the IODE network actively collaborate in the IO C Committee on International Oceanographic Dat a and Information Exchange, IODE.

IODE has developed and implemented a number of procedures, guidelines an d standards for marine data and information acquisition, quality control an d assessment, processing and exchange. In addition IODE has initiated a nd guided the development of the standardized software package OCEAN-PC to assis t scientists and data managers with marine data and information management. A first version of OCEAN-PC for evaluation by a limited group was publi shed last year. It can be stated that IODE provides an effective, global, operational network giving access to a wealth of marine data and information. Variou s aspects of IODE will be treated in my later presentation in more detail.

Another essential e lement for coastal zone management is formed by numerical models. For their development historical data are of unique value. IO C devotes special attention t o historical data through its Data Archaeology and Rescue Project. Within this project assistance and support can be provided t o activities aimed at making valuable historical data accessible.

Remote Sensing forms another crucial element of coastal zone managemen t systems. IOC is actively engaged in forming an interface between the IO C community as consum ers of derived products on the one hand and the producers of these products on the other. Special atte ntion is given to aspects such as

IOC Workshop Report No. 103

Annex I – page 2

content, quality, accessibility, periodicity of these products. On a personal basis I would like to add that in view of re cent trends in the space industry aimed at dedicated satellites, it seems very timely to consider th e feasibility of a dedicated satellite system for coastal zone monitoring.

Through its TEMA programme (Training, Education and Mutual Assistance), IOC provides training o pportunities both in the region and elsewhere on subjects such as marine data and information management, remote sensing for marin e applications, and specific data acquisition training. TEMA also includes an activity on equipment where requests for specific instruments or compute r systems are matched with offers of surplus equipment received by IOC.

Finally smooth communications form a basic element for collaboration an d cooperation with regard to coastal zone management. Besides telephone and fax, facilities such as electronic mail and data communications (Internet) should be made available as a prerequisite for SIDS to communicate between eac h other and with the rest of the world. Proper communications are essential to the effective imple mentation of decisions related to integrated coastal zone management systems in small island states.

IOC is happy to offer its intergovernmental network and its specific and wide experience to the current efforts aimed at establishing integrated coasta 1 zone management capabilities in small island developing states. Thus IO C provides a contribution to the responsible management of the coastal marine environment from which we originate and upon which we strongly depend for our survival. I look forward to a most useful and interesting meeting that will result in concrete and feasible recommendations. Thank you!

LIST OF PARTICIPANTS

Johannes Akiwumi

Global Resource Information Database (GRID) United Nations Environment Programme Nairobi, Kenya 254 2 623442 -tel 254 2 624274 -fax

Sara Aniyar

Eastern Caribbean Centre University of Virgin Islands #2 John Brewers Bay St. Thomas, U.S. Virgin Islands 00802-9990 (305) 776-9200 -tel (809) 777-8701 -fax

Michael Arno

President, Spatial Insights Inc. Arlington, VA. U.S.A. (703) 522-2114 -tel (703) 827-7037 -fax (703) 516-4722 -BBS IGIJEUS@GWUVM.VNET.COM -Internet

Kenneth Atherley

Coastal Conservation Unit, Ostins, Christ Church, Barbados (809) 428-5945 -tel (809) 428-6023 -fax

Fred Berry

IOCARIBE Secretariat Casa del Marqués de Valdehoyos Calle de la Factoria Cartagena de Indias, Columbia 5753 600 407 -tel 5753 646 399 -fax

Nathalie Bleuse

Meteo-France Service Régional de Guadeloupe Aérodrome du Raizet - B.P. 285 97158 Pointe à Pitre Cedex Guadeloupe 590 82 26 26 -tel 590 82 14 25 -fax

Leo Brewster

Coastal Conservation Project Unit, Ostins, Christ Church, Barbados (809) 428-5945 -tel (809) 428-6023 -fax

Livingston Cassel Director of Surveys, Ministry of Lands, Fisheries and Coastal Zone Dominica (809) 448-2401 -tel (809) 448-7999 -fax ext.3435

Jeannine Compton

Fisheries Biologist, Department of Fisheries, Ministry of Agriculture, Lands, Fisheries and Forestry

Saint Lucia, W.I. (809) 452-3987 -tel (809) 453-6314 -fax

Alan Duncan

Chief Information Officer Institute of Marine Affairs Hilltop Lane, Chaguaramas P.O.Box 3160 Carenage Post Office, Trinidad & Tobago, W.I. (809) 634-4291 -tel (809) 634-4433 -fax MARINAF -Cable address IMA.TRINIDAD.LIBRARY -Omnet

Mark Doctoroff

Managing Director R&D Associates "Bay Rock" Foul Bay/St. Philip Barbados, W.I. (809) 435-5237 -tel (809) 429-7480 -fax

Jim Eade

Deputy Director South Pacific Applied Geoscience Commission SOPAC, Private Mail Bag GPO, Suva, Fiji 679 381 139 -tel 679 370 040 -fax

Guy Engelen

Research Institute for Knowledge Systems P.O. Box 463 6200 AL Maastricht The Netherlands 31 43 253433 -tel 31 43 253155 -fax GUY@RIUS.NL -Email

Marjon Galema

UN Centre for Human Settlements, United Nations Development Programme Bridgetown, Barbados (809) 429-2521 -tel (809) 429-2448 -fax UNDEVPRO - Cable 2344 WB -telex

Guillermo Garcia

Comite Oceanografico Nacional, La Habana, Republica de Cuba 537 331442 tel/fax

Paul Geerders

IOC Consultant Kobaltpad 16 NL 3402 JL YSSELSTEIN The Netherlands 31 30 206641 -tel 31 30 210407 -fax P.GEERDERS@OMNET.COM -Email

Francisco Gonçalves

IOC Workshop Report No. 103 Annex II - page 2

Project Manager McElhanney Geosurveys Inc., Palm Brook Corporate Center, Suite B-110 3602 Inland Empire Blvd. Ontario, California, 91764 USA (909) 483-1737 -tel (909) 483-1736 -fax

Calvin Gray

Director, National Meteorological Service P.O. Box 103 Kingston 10, Jamaica (809) 924-8055 -tel (809) 924-8670 -fax

Peter Grose

Office of Ocean Resource Conservation and Assessement, National Oceanographic and Atmospheric Administration, Silver Springs, Maryland, 20910 U.S.A. (301) 713-3000 -tel ext.132 (301) 713-4384 -fax PGROSE@SEAMAIL.NOS.NOAA.GOV -Internet

Kevin Hill

Advisor, Special Programs United Nations Department of Policy Coordination and Sustainable Development New York, N.Y. USA (212) 963-5737 -tel (212) 963-5935 -fax

William Hinds Canadian International Development Agency, Canadian High Commission Bridgetown, Barbados (809) 429-3550 -tel (809) 429-3876 -fax

Roland Hodge

Director of Fisheries and Marine Resources, Office of the Chief Minister and Minister of Home Affairs, Government of Anguilla The Valley, Anguilla, B.W.I. (809) 497-2518 -tel (809) 497-3389 -fax ANGGOVT -telegram 9313 ANGGOVT -telex

Thomas I. Janossy Director,

Remedial Ecotoxicological Expeditions Fund (REEF) 175 Elm Street, Suite 805 Toronto, Ontario, M5T 2Z8 Canada (416) 598-4729 -tel (416) 599-9540 -fax

Wayne T. King

Cook Island Conservation Service Tuanga Taporoporo P.O. Box 371 Karotonga, Cook Islands 682 21258 -tel 682 22256 -fax SECFANG 02056 -telex

Giulio Maffini (Technical

Vice-President **Co-ordinator)** GIS Business Unit SHL Systemhouse Inc. 50 O'Conner St, Suite 501 Ottawa, Ontario K1P GL2 Canada (613) 236-9734 -tel ext. 1533 (613) 567-5433 -fax

Tony Mellen

Director of Fisheries, Ministry of Fisheries, P.O. Box 871, Nuku'alofa, Kingdom of Tonga 676 21 399 -tel 676 23 891 -fax 66 369 PRIMO TS -telex

Learie Miller Deputy Executive Director Natural Resources Conservation Authority 53 1/2 Molynes Road Kingston 10, Jamaica W.I. (809) 923-5155 -tel (809) 923-5070 -fax

Leonard Nurse

Project Manager Coastal Conservation Project Ostins, Christ Church Barbados (809) 428-5945 -tel (809) 428-6023 -fax

Jean Piuze (Chairman)

Director Marine Environmental Sciences Maurice Lamontagne Institute Department of Fisheries and Oceans P.O. Box 1000 Mont-Joli, Quebec Canada G5H 3Z4 (418) 775-0703 -tel (418) 775-0542 -fax

Alan Robertson

ARA Consultants Bridgetown, Barbados (809) 436-3123 -tel (809) 429-4777 -fax

Bob Ryerson

Chief, Industrial Co-operation and Communications Canada Centre for Remote Sensing Natural Resources Canada 588 Booth St. Room 333 Ottawa, Ontario Canada KIA 0Y7 (613) 947-1213 -tel (613) 947-3125 -fax

Vincente Santiago

Programme Officer Regional Programme for Integrated Planning and Institutional Development Caribbean Environment Programme, United Nations Environment Program 14-20 Port Royal Street Kingston, Jamaica (809) 922-9267 -tel (809) 922-9292 -fax 3672 UNEPCAR JA UNX040 - UNIENET UNEPRCUJA - ECONET

Mark Spalding
World Conservation Monitoring
 Center,
219 Huntingdon Road
Cambridge CB3 ODL
United Kingdom
44 22 3277314 -tel
44 22 3277136 -fax
SPALDING@WCWC.ORG.UK -Email

Peter St. Hill

146 Sunset Crest St. James, Barbados (809) 432-7768 -tel

Roger White

Department of Geography, Memorial University, St. John's Newfoundland, Canada (709) 737-7417 -tel (709) 737-4000 -fax RWHITE@KEAN.UCS.MUN.CA -Email

Darren Williams

D. Williams Consultants 1556 Fisher Avenue Ottawa, Ontario Canada K2G 3R7 (613) 990-9298 -tel (613) 225-9690 -tel (613) 990-5510 -fax (Administrative Co-ordinator)

OPENING REMARKS

BY JANET ZUKOWSKY, HIGH COMMISSIONER FOR CANADA TO BARBADOS AND THE EASTERN CARIBBEAN

BARBADOS, APRIL **20-22, 1994**

Mr. Chairman, representatives of Small Island States and regiona l organizations, representatives of the Intergovernmental Oceanographi c Commission, UNEP regional bodies, NGOS, and other international organ izations, presenters, ladies and gentlemen:

On behalf of the Government of Canad a, I welcome this opportunity to make a few brief remarks at the opening of this important Workshop on Geographic Information System Applications in Coastal Zone Management of Small Islan d States.

It may at first seem strange that the Government of Canada should b taking an active interest in matters such as the topics you will be examining over the next three days. But when you remember that Canada is, b definition, a maritime nation, possessed of the longest coastline of an country in the world, not to mention some se veral thousand coastal and inland islands, it becomes more apparent that we share many common interests an problems related to coastal zone management. It is perhaps in partia 1 response to these problems that Canada has become preoccupied with, an ultimately has developed considerable expert ise in, the application of modern electronic data processing, remote sensing and cartographic technique s designed to help decision makers working in the coastal zone.

Many other countries and international and regional bodies hav e simultaneously come to the realization that the seemingly intractable problems of harmonizing the many legitimate and benef icial activities which take place in our coastal zone s can be made somewhat more approachable by the effective use of technologies such as these. During this Workshop you will hear from decision makers and specialists from all over the world who will reco unt their experiences in programmes aimed at addressing the various aspects of thi s broad subject and you, in turn, I have no doubt, will contribute to thes e discussions by your own observations on the opportunities and the impediments which still must be addressed to effectively employ these technologies t o their ultimate advantage.

This Worksh op represents a valuable opportunity to introduce many of you to both existing and emerging applications of GIS technologies in the field of coastal zone management. For those of you who already have a workin g knowledge of GIS, t he Workshop may present some very new applications of the technology as well as more focussed employment with respect to coastal zone management of small island states. For all, the Workshop, and th e recommendations that will emanate from it, represent a valuable opportunity to forward your views on the utility of this technology to the Globa 1 Conference on the Sustainable Development of Small Island Developing States beginning here in Barbados next week. Canada, in cooperation with th e Intergovernmental Oceanographic Commission of UNESCO, is pleased to play a role in this fundamental process of collaborative learning.

It would not be reasonable to assume that we will leave here after three days having developed a master plan that will lead to a universal remedy to coastal zone conflicts which stand in the way of sustainable development of the coastal resources of small island states. But we will have a muc h clearer picture of the issues and, I trust, some usable technological methods for r addressing them. It will be up to each one of you to take from this what you can and apply it locally or regionally in yo ur own context. For those of you who will be staying to attend the international conference, I hope th at we can rely upon you to take these discussions and recommendations with you and carry the process one more step forward in seeing that decisions affecting th e coastal zone are ma de in the full awareness of the lessons we gain from this workshop.

May I wish you every success in your discussions and thank you all once again for having joined us here to help make this Workshop the valuable contribution to sustainable resource planning that I am now confident it will become.

IOC Workshop Report No. 103 Annex IV

WORKSHOP PROGRAMME

WEDNESDAY, APRIL 20, 1994

- 08:30 08:40 Welcome and introduction (J. Piuze, Workshop Chairman)
- 08:40 08:45 Opening Remarks (J. Zukowsky, High Commissioner for Canada)
- 08:45 09:00 Welcome Comments from IOC (P. Geerders)
- 09:00 10:15 Opening Panel Discussion

Coastal Zone Management for Small Island States (SIDS) - The Issues and Challenges.

Panelists: G. Garcia, L. Nurse, and A. Robertson

- 10:30 11:30 IOC Experience and Views on Coastal Zone Data Management Presenter: P. Geerders
- 11:30 13:00 Principles for use of GIS in Coastal Zone Management Presenter: M. Arno
- 14:30 15:30 Strategies for Building and Maintaining Coastal Zone Databases Presenter: P. Grose
- 15:45 16:45 Remote Sensing and Coastal Zone Data Acquisition and Analysis Presenter: B. Ryerson
- 16:45 17:30 Closing Panel Discussion

Focus on identifying new issues raised by the technical presentations. Discussion open to the floor.

Panelists: N. Bleuse, A. Duncan, and C. Gray

17:30 - 18:30 Hands-on GIS Free Time

Review and Interact with the tools presented and discussed earlier in the day. Delegates will have an opportunity to consult with the technical experts.

THURSDAY, APRIL 21, 1994

08:30 - 09:15 Opening Panel Discussion

Panelists: L. Cassel, J.Eade, and T. Mellen

- 09:15 10:30 Coastal Zone Management in Barbados with GIS Presenter: K. Atherley
- 10:45 12:00 Desktop Delivery Systems for Coastal Zone Information Presenter: P. Grose

IOC Workshop Report No. 103 Annex IV

13:15 - 14:15 GIS Dynamic Modelling in Coastal Zone Management

Presenters: G. Engelen and R. White

14:15 - 15:30 Information Technology Development Directions

Presenter: G. Maffini

15:45 - 16:30 Closing Panel Discussion

Panelists: J. Akiwumi, S. Aniyar, and W. King

16:30 - 17:30 Detailed Demonstrations of Case Studies

An opportunity to review and discuss the case studies presented earlier in the day.

FRIDAY, APRIL 22, 1994

- 08:30 09:00 Modus operandi for three Workshop Breakout Sessions
- 09:00 10:15 Breakout Sessions Part I (Three concurrent) Leaders: S. Aniyar, C. Gray, A. Duncan Rapporteurs: W. King, T. Mellen, J. Eade
- 10:45 12:00 Breakout Sessions Part II (Three concurrent as above)
- 13:00 14:30 Report from Session Leaders and Rapporteurs
- 14:30 16:00 Plenary Discussion and Development of Recommendations and Conclusions
- 16:00 16:30 Concluding Address (Senator Harcourt Lewis, Minister of the Environment, Housing and Lands, Government of Barbados)
- 16:30 17:30 Workshop Conclusions

IOC Workshop Report No. 103 Annex V

REMARKS FOR THE OPENING PANEL DISCUSSION BY GUILLERMO GARCIA

For many small island states tourism represents an important economic activit y and its development is based on the recognition of environmental natural resource. In other words, tourism activities are today sensitive to the quality of the environment.

But, when talking about small islands in general, "the environment" could be understood as the marine and coastal zo nes from which they obtain one of their basic resources.

Small island states are, in fact, "coastal marine" countries.

Moreover, if the importance of the coastal zone for small island states has to be emphasized it is because it contains several of the most important natura l resources:

(i) beaches(ii) coral reef areas(iii) mangrove areas

That is why one should say the coastal zone is a fundamental factor for the sustainable development of small island states. It means that when planning the short, medium and long term use and exploitation of this complex natural resource one should preserve it to satisfy the needs of future generations.

Small islands have several common characteristics that make them very sensitive to natural and man-made effects, generally influencing the natur al equilibrium of the coastal zone. I would like to point out the following characteristics:

- (i) Susceptibility to natural environmental events (hurricanes, cyclones, storm surge phenomena, etc).
- (ii) Tenancy towards ecological instability.
- (iii) Almost immediate repercussions on the coastal zone and marine environment of terrestrial events.
- (iv) Coastal resource planning and management is essentially synonymous with natural resource planning and management.
- (v) Remarkable vulnerability to global environmental phenomena, such as sea level rise, an increase in the frequency and severity of tropical storms, etc.

For an important part of the community (scientists, environmental managers an d policy decision-makers) the problems as sociated with the coastal zone were initially related to some extent with climate changes, and in particular to continuous se a level rise. But, it is already accepte d that these problems are the consequences of the immediate response of the coast to many human induced activities, including not only those resulting from an environmen tally erroneous planning of the coastal space but also those ensuing from mitigation actions improperly implemented.

In consequence, any activity or program dealing with Coastal Zone Managemen t shall include the following items:

- (i) Identification of coastal resources, including those of public/social character.
- (ii) Definition of priority uses.
- (iii) Establishment of short and medium term research programs including:
 - (a) general characterization studies
 - (b) base line determination
 - (c) studies on processes/interactions
- (iv) Establishment of long term or permanent monitoring program based on the

results of research and base line determination.

- (v) Definition of common methodologies for research and monitoring, and development of intercalibration and standardization exercises.
- (vi) Establishment of coastal ecosystems data bases, including not only scientific research and monitoring data, but also those of social character (i.e. recreational, touristic, etc) and of economic character (i.e. land-based industries, agriculture, fisheries, etc).
- (vii) Development of mathematical models of coastal ecosystems (including those of specific or general character and use) that could contribute to predict the effects of management decisions and/or climate change.

Other items have to be borne in mind if one has to manage damaged ecosystems These items are as follows:

- (i) To find the causes of the damages.
- (ii) To define the ecologically sustainable measures to mitigate, or at least to solve the consequences and causes of damages.
- (iii) To restore, as far as possible, natural conditions to the affected ecosystem.

On the other hand, an important aspect in support of coastal zone management is the existence of local and national regulatory and coordination mechanisms.

A coordination mechanism is ess ential to look for the best solution to a problem and to find the most adequate decision for the management of the resources. A regulatory, and an enforcement (or compulsory), mechanism is essential to force people to act in the right way.

Finally, if we want to succeed in coastal zone managemen t several challenges have to be faced. The changes include:

- (i) To increase public education, also for decision-makers, on environmenta l issues.
- (ii) To create and/or increase the necessary human resources at different levels of scientific and technological knowledge.
- (iii) To employ, or create when necessary, a mechanism for cooperation and coordination at local, national and international levels.
- (iv) To develop the free exchange of scientific information and data between national institutions, and countries.
- (v) To develop the widest possible exchange of experiences in success and errors in coastal zone management at national and international levels.
- (vi) To define and establish the necessary methodologies and technologies for research and monitoring. This shall include intercalibration and standardization exercises.

In closing, I want to say again that coastal zone management is a very comple x exercise, not only of scientific nature but also of social and economic character. This exercise has to be continuously improved if we intend to su cceed, because in our specific case, as small island states, the present economic situation is perhaps the biggest obstacle to apply the principle of sustainable development.

IOC Workshop Report No. 103 Annex VI

COASTAL ZONE MANAGEMENT (CZM) IN BARBADOS -COASTAL CONSERVATION UNIT (CCU)

BY

LEONARD NURSE

INITIAL PROBLEMS IN ESTABLISHING CZM PROGRAM

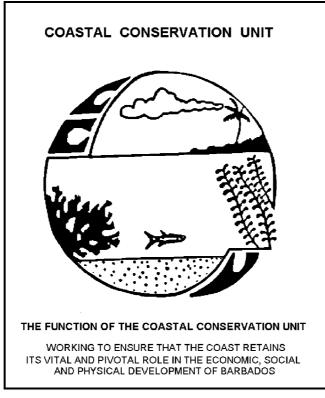
* NEEDS ASSESSMENT

- identification of critical issues facing coastal zone

- beach erosion/ coastal water pollution/ reef degradation/ sand mining/ habitat loss (seagrasses, wetlands, beach vegetation)?
- * Needs assessment provides basis for determining DATA REQUIREMENTS; MONITORING SCHEDULE & DESIGN; EQUIPMENT; INSTITUTIONAL & PERSONNEL.
 - in Barbados case, triggering concerns were perceived beach loss,
 - deteriorating water quality and reef morbidity and mortality. - led to establishment of Coastal Conservation Unit, with a critical core staff in oceanography, marine biology, engineering, coastal
 - planning, surveying.

* After birth of CCU, problem of adequate funding commitment -mainten ance/continuity of activities. Many SIDS do not have strong commitment to maintenance of infrastructure and programs, especially environmental programs; only relatively recently regarded as priorities in region.

DATA MANAGEMENT ISSUES


* Assembly of FRAGMENTED DATA SOURCES - data on range of variables gathered by variety of agencies: maps, and ground-level photos, coastal survey plots, informati on on c etc related to specific projects; water quality data. aerial currents, waves, - in cases no reference to sampling methods, protocols, thus difficult t. 0 determine reliability of existing information. - requirements for RETRIE VAL/ QUALITY CONTROL/ STORAGE/ MANAGEMENT for decision-making.

* ORGANIZATION/CLASSIFICATION of available data into discrete, manageable subfields to meet requirements identified in "Needs Assessment". - coastal engineering, marine biology, oceanographic, surveying and othe r data files. Files then used as basis for developing time requirement for sound CZM. series in case of CCU, process useful in identification of DATA GAPS and deficiencies - thus highlighted the need for modification of data gathering and monitoring.

THE REALTTY

- * At every stage of process the need for an adequate data management system was highlighted.
 - The system chosen must have the necessary flexibility to accommodate increasing volume, complexity and sophistication of information, as data base expands.
- * In case of Coastal Conservation Unit, Barbados, program at a stage where higher levels of efficiency can only be achieved with a functional Geographic Information System

IOC Workshop Report No. 103 Annex VI - page 8

BACKGROUND ON THE ROLE AND FUNCTION

OF THE COASTAL CONSERVATION UNIT

BACKGROUND

The Coastal Conservation Unit (C.C.U.) was established in 1983. Conceived as a specialized governmental unit the C.C.U. is specifically concerned with issue s relating to coastal erosion and the app lication of management strategies for dealing with this threat.

OBJECTIVE

The long term objective of the Unit is to design and implement an effective comprehensive Coastal Zone Management Plan for the island of Barbados.

PROJECT EXECUTION

The 1983-1984 Diagnostic and Pre-feasibility Coastal Conservation Study was the first major pr oject work executed by the Unit. The Study was designed to determine and assess the causes of coastal erosion in Barbados and to make recommendations on remedial strategies. This work was funded by the Inter-American development Bank.

The Feasibility and Design Coastal Conservation Study wi ll be the next major step in pursuit of the Unit's overall objective. The major component s of this project are to research and define strategies for:

- Beach creation and stabilization
- Water quality improvement
- Legal and institutional arrangements

PRESENT WORK

- The Unit's work currently includes the following:
- (a) OCEANOGRAPHIC ASSESSMENT
 - Beach profiling at over 100 sites
 - Wave climate analysis
 - Tide level monitoring
 - Water quality assessment
 - Fringing and bank reef surveys
 - Longshore sediment movement.
- (b) COASTAL RESEARCH

Staff undertake applied research relating to various coastal matters, fo r example:

- Coastal legislation
- Lagoon monitoring and improvement
- Beach access
- Ocean data management
- Jetties in Carlisle Bay
- Revegetation and dune management
- Artificial seaweed as a means of erosion control
- Impact of effluent discharge (including thermal effluent on beach dynamics, marine and coastal ecosystems.

(c) CONSULTATION ON COASTAL ENGINEERING

The Unit advises public and private sector agencies on shoreline protectio n methods and engineering design standards:

- Management strategies
- Design criteria
- Implementation
- Monitoring and impact assessment

IOC Workshop Report No. 103

Annex VI - page 10

(d) DEVELOPMENT CONTROL

The Unit participates in the decision-making process vis-a-vis developmen control by evaluating all proposed developments in the littoral and marine zone t This work is done in association with the Town Planning Department.

(e) EDUCATION OUTREACH

The education programme which seeks to sensitize the public about coasta 1 problems involves active participation in exhibits, media programmes and lectures . Library information is also made availa ble to university secondary schools students, and bona fide researchers from the general public.

STAFFING

At present eleven (11) key technical and support staff members perform th е routine work of the Unit. They also provide critical support during the majo research and coastal engineering projects. There are plans to have the staffin complement upgraded to include positions which have been considered necessary an r g essential to the functioning of the Unit. The present complemen t of Senior Technical staff consists of :

Project Manager Coastal Planner Marine Biologist Coastal Engineer Civil Engineer Water Quality Technician

The following presents an outline of the technical exper tise which resides within the Unit:

TECHNICAL POSITION

SPECIALITY

Project Manager	Coastal Geomorphology			
Coastal Planner	Coastal Planning			
Marine Biologist	Marine Biology			
Coastal Engineer	Coastal Engineering			
Civil Engineer	Civil Engineering			
Scientific Officer	Natural Science			
Research Officer	Natural Science			
Surveyor/ Assistant Surveyor	Hydrographic Surveying			
Draftsman Comput	ter Aided Design			
2 Surveyors Chainmen				
Technician				

ADMINISTRATION

Accountant Clerical Officer Secretary Clerk/Typists

SUMMARY

Although the Coastal Conservation Unit is a relatively young agency (10 years), it has earned a reputation for high productivity/professionalism and quality research its field. It has been able to effectively pool and utilize its own resources and quality research its own resources and management issues. To this end the Coastal Conservation Unit is working to ensure that the coast retains its witch and and a source that the coast retains its witch and a source that the coast retains its witch and a source that the coast retains its witch and a source that the coast retains its witch and a source that the coast retains its witch and a source that the coast retains its witch and a source that the coast retains its witch and a source that the coast retains its witch and a source that the coast retains its witch and the coast retains the source that the coast retains its witch and the source that the coast retains the source that the coast retains the source that the source the source that the source the source that the source the sou is working to ensure that the coast retains its vital and pivotal role in the economic, social an Р physical development of Barbados.

IOC Workshop Report No. 103 Annex VII

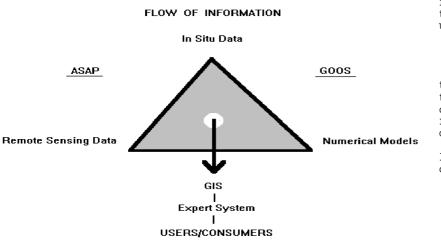
IOC EXPERIENCE AND VIEWS ON MARINE DATA AND INFORMATION

MANAGEMENT IN SUPPORT OF CZM SYSTEMS FOR SIDS

by

Paul Geerders

THE CONSUMER THE PRODUCER POSSIBLE IOC ROLE CONCLUSIONS (DEMOS)


This presentation will first focus on the basic elements of the end-users, the consumers of coastal zone management da ta and their needs. Then it will look at the various aspects of the producers of the relevant data. Furthermore, the possible e role and contributions of IOC will be p resented followed by a number of conclusions. A demo was given of the OCEAN-PC package of IOC.

REQUIREMENTS CZM: ACTUAL SITUATION HISTORY FUTURE

In coastal zone management the basic needs refer to: the actual situation (especially in calamity situations), the past (to d etect trends) and the future (to evaluate the consequences of certain actions or events).

A PRIORI KNOWLEDGE DATA INFORMATION KNOWLEDGE MODELS SECURITY STANDARDS

The proper basis of the application of technology such as GIS systems is an a-priori knowledge of the processes to be captured in the system. This knowledge, to b e obtained through scientific research, should be complemented with standardized , quality-controlled data and with reliab le information. Scientific knowledge leads to numerical models describing with certain limitations and assumptions the processe s included in the system. Security needs to be applied at several levels: internally to ensure consistency, and externally to prevent external influence on systems o f which the proper performance can be vital for environment and national economy . Standards need

from technology push to user-driven systems

to be applied at all level s to ensure the require d compatibility between dat a from different sources an d of different types.

In order to provide the consumers with a c ontinuous,

IOC Workshop Report No. 103

Annex VII - page 12

consistent stream of data and information, three sources need to be combined: in-situ data, Remote Sensing data and data from numerical models. GIS systems form a n excellent carrier to present and evaluate large amounts of different types of data and information. Expert systems (inclu ding decision-support systems) could not only facilitate the access for the user but also provide a dynamic element, especiall y vital in calam ity situations. We need to develop from technology-pushed systems to systems driven by concrete user requirements. The IOC concept of GOOS, the Global Ocean Observing System, is based upon this model. The system ASAP (A System for r Assessment of Pollution, developed by a Netherlands consortium f or UNEP to be applied primarily in Kuwait to assess the environmental situation after the liberation) is a good example of a practical system including several of the aspects mentione d above.

NATIONAL NODCS REGIONAL RNODCS GLOBAL WDCS

In order to en hance the accessibility of marine data and information on a national, regional and global scale, IOC has developed the concept of the IODE networ k (International Oceanographic Data and I nformation Exchange). This network includes: national oceanographic data centres (about 55 around the world), responsible e oceanographic data centres (both for specific regions and for specific subjects) and the World Data Centres - Oceanography, the latter operating under ICSU.

DATA ACQUISITION SAMPLING PROCESSING ARCHIVAL EXCHANGE

The IODE system follows closely the stages of sea-going campaigns from dat a acquisition until archival and exchange of the data. This is the basic proces s required to provide the essential supporting data for coastal zone managemen t systems.

planning NOP national oceanographic programme completion CSR cruise summary report datafile MEDI marine environmental data inventory exchange GF-3 general format -3 publication ASFA aquatic sciences and fisheries abstracts

IODE has developed a number of specific procedures and guidelines to monitor an d facilitate the flow of marine data. NOP is used to announce planned cruises on an international level. This could be important e.g. to provide an opportunity fo r other scientists (e.g. ornithologists). A CSR report is used to describe what has actually happe ned during a cruise in terms of: where data or samples were acquired, what type of data or samples were acquired and which ship, institutions an d scientists were involved in the cruise. IODE provides international exchange of NOP and CSR. IOC regularly publishes updat ed MEDI Catalogs. GF-3 is a technical format provided to ex change marine data, mainly in large quantities. Reduced and specific formats have been developed for specific types of data and for s mall amounts of data. IOC is a co-sponsor of the ASFA system, operated by FAO, an automated literatur e system containing references to a wide range of marine-related publications. It is advisable to a ssure that the results of marine scientific work finally are included in ASFA.

STANDARDS PROCEDURES GUIDELINES OCEAN-PC quality control and processing ETI taxonomy DATA ARCHAEOLOGY historical data ELECTRONIC MAIL Sciencenet/OMNET

IOC and IODE has developed a range of standards, procedures and guidelines related to marine research, from data acquisition to final data archival. These have bee n documented and published in the series IOC Manuals and Guides. OCEAN-PC is software package for marine data quality control, processing and presentation. It consists of a number of modules from different origin. It is intended to be expanded over the

vears. OCEAN-PC could be most effective to provide standardized marine data input to coastal zone management systems using GIS. In relation to OC EAN-PC, IOC publishes an inventory of useful marine research related software packages developed all around Most of these are freely available. the world. ETI, the Expert System on Taxonomic Interpretation, is being developed with IO support to lead to a world-wide system compiling and making accessible the slowl C У vanishing expertise in the world on taxonomic interpretation. T an effective component of coastal zone management systems. his system could form Historical data form an essential eleme nt for research for trends in the environment leading to numerical models which in turn are crucial for coastal zone managemen systems. IOC's Data Archaeology and Re scue project is aimed at providing assistance and advice to making valuable historical marine data sets accessible. t Communication through electronic mail and other digital communication systems i s vital for rese arch in general and for marine research in particular. The effective implementation and operation of coastal zone management systems will depend or availability of reliable, cost-effective digital and non-digital communicatio on the n technology.

TRAINING in: MARINE DATA MANAGEMENT MARINE INFORMATION MANAGEMENT REMOTE SENSING FOR MARINE APPLICATIONS ON-BOARD PROCEDURES

IOC can provide training opportunities in marine data management, marine information management and Remote Sensing for marine applications. These can be in the form of (mostly regional) training courses and individual training. Also IOC provide s opportunities for training in on-board data acquisition procedures.

WHAT DOES GIS MEAN?

GHASTLY IMPRESSIVE SHOW GREAT IMPRESSION SIMULATOR GONZO'S IDEA SNATCHER

"gis" (Dutch) means "smart, cunning"

GENERATION

INTERCALIBRATION

STANDARDIZATION

We should be c autious concerning the value and capabilities of GIS systems as such. They often tur n into fancy data presentation and manipulation systems providing its users with apparently credible views of "reality". However, we must keep in min d that only oper ational infrastructures for the generation of the required data, that only a perfect intercalibration between the many different sources of input data and that only stri ct standardization at all levels can make GIS systems provide results useful for their users.

CONCLUSIONS: WHAT DOES THE CONSUMER WANT? WHAT CAN WE DELIVER? WHAT CAN IOC CONTRIBUTE?

A thorough analysis of user (consumer) requirements is essential to develop an d implement GIS and related technology to support coastal zone management. There are immense possibilities from technology: let's make a wise use of them. Finally IOC can contribute in several ways to this process, both with its ex perience and with the specific tools it has developed for marine science and for marine data an d information management.

IOC Workshop Report No. 103 Annex X

REMOTE SENSING AND COASTAL ZONE DATA

ACQUISITION AND ANALYSIS

BY

BOB RYERSON AND CATHRYN BJERKELUND

Slide 1:

Remote Sensing and Coastal Zone Data Acquisition and Analysis

Bob Ryerson and Cathryn Bjerkelund Canada Centre for Remote Sensing Natural Resources Canada Ottawa, Canada

Slide 2:

Remote Sensing is the collection of natural resource information using imager y acquired from aircraft or spacecraft

Slide 3:

We are looking from above - the implications for use

Phenomena must be:

* understood

- * spatially manifested at the image scale
- * verifiable
- * "visible"

Slide 4:

RS uses reflected or emitted EM radiation using either passive or active sensors

Slide 5:

Interpretation Criteria

- * spectral reflectance (colour/tone/brightness)
- * shape
- * texture
- * pattern
- * context/juxtaposition
- * shadow
- * size

..... all brought together by the interpreter's understanding of spatial relationships in the discipline and region being studied

Slide 6:

Why do we use remote sensing

- * to obtain information for hostile or hard to reach areas
- * quickly get similar information over a large area
- * less costly than traditional field-based methods
- * to have a permanent (image) record
- * to obtain a quantitative record

Slide 7:

"Two factors tell us that remote sensin g will be more widely used in the future. The public purse strings are tightening. At the same time the publics demand fo r environmental information appears to be insatiable. Remote Sensing is the only way out."

Comment at a public forum on the importance of remote sensing made at the ASPRS Washington, D.C. March, 1984.

Slide 8:

Remote sensing - tools of the trade:

Platforms

- * drones/pilotless aircraft
- * balloons
- * aircraft-light
- -survey
- * satellites
- * manned spacecraft

Slide 9:

Remote sensing - tools of the trade:

Sensors

- * cameras (Photo and video)
- * scanners
- * lasers
- * radars

Slide 10:

Remote sensing - tools of the trade:

Analysis

- * magnifiers
- * projection tools
- * image processing software
- * geographic information systems
- * skilled people with a natural resource/environmental background

гос No. 103 Workshop Report Annex X - page 16 Slide 11: A variety of sensors and products are available Satellite imagery - SPOT Pan & MSS, - Landsat MSS & TM - NOAA - SEAWIFS - Worldview, etc. (1995 and beyond) - ERS-1 - MOS-1 - JERS-1 Slide 12: Satellite Imagery - large area coverage - low cost for large areas - 10 to 30 metre resolution - not generally suitable for local detail - good for overview - land cover, vegetation condition, water bodies, forest clear cuts, roads, topographic and other map updates Slide 13: Airborne Sensors - B&W air photos - colour air photos - colour IR - video cameras - digital cameras - IR scanner - MSS - radar laser profilerslidar bathymeters - low light level TV Slide 14: Remote Sensing Applications * environment * geology * engineering * forestry * agriculture * oceanography * hydrology * cartography

- * wildlife habitat
- * urban/regional planning
- * soil conservation
- * disaster assessment/mitigation
- * international development

IOC Workshop Report No. 103 Annex X - page 17 IOC Workshop Report No. 103

Annex X - page 18

Slide 15:

Coastal Applications

* Base geography - shoreline

- * Base geography topography/bathymetry
- * Assessments of watersheds
- * Resource locations (beaches, shell beds, etc)
- * Demographics (population/supporting sampling)
- * Land cover -> land use
- * Discharges
- * Transportation systems
- * Ocean circulation and productivity
- * Disaster assessment/mitigation
- * Sediment levels
- * Shipping activities

Slide 16:

Photographic, Video Cameras and Digital MSS

- * Water quality and pollution monitoring
- * Vegetation damage due to chemical or other toxic waste effects
 * Land use mapping and surface activity mapping such as strip mining and industrial damage
- * Urban/shoreline cadastral mapping
- * Aquaculture studies
- * Seaweed mapping
- beaucea mappin

Slide 17:

Infrared Line Scanning Devices

- * Thermal plume discharges to surrounding water bodies
- * Forest fire mapping and detection
- * Underground fires/heat sources
- * Damaged subsurface pipelines and sewer systems
- * Aquifer and dam leakage
- * Oil spill detection and mapping
- * Frost pocket mapping/heat loss from buildings (in north)
- * Sea weed mapping

Slide 18:

Synthetic Aperture Radars

- * Oil spills on water
- * Flood Mapping
- * Effects of landslides, earthquakes and erosion
- * Forest depletion (?)
- * Sea ice mapping * Human activity
- (eg. strip mining and land use mapping bananas, etc) * Aquaculture
- * Shoreline mapping/coastal erosion
- * shipping detection

IOC Workshop Report No. 103

Annex X - page 19

Slide 19:

A role for Remote sensing in local environmental monitoring:

- historical examination possible
- revisit
- permanent record

Slide 20:

The benefits of airborne MSS

- digital
- GIS compatible
- calibration
- revisit

Slide 21:

A Look to the Future

- more companies offering products and services
- higher resolution satellite imagery available
- radar imagery more available
- more attention to coastal zones
- GIS/RS integration will be routine
- lower costs of analysis systems
- return to more simple solutions
- airborne digital costs will drop

IOC Workshop

Annex X - page 20

GIS in Coastal Zone Management: Barbados' Experience

by

Kenneth Atherley

Integrated CZM started with the 1983-84 Prefeasibility Study in Coastal Conservation:

(i) Diagnosis of problems

(ii) Possible solutions suggested

(iii) Initiate monitoring of BEACHES/REEFS

1983-Present:

Coastal Conservation Unit retained to peri	Form basic functions, e.g.
(a)
Continue monitoring	
(b)
Advice on coastal development	
(C)
Project preparation work	

1991-1995:

Technical Feasibility Study (see table 1)
(
a
(
)
Study processes and trends by expanded and concentrated monitoring.
(
b
)
Develop CZM plan for island
(
c
c
)
Design and test certain physical engineering projects

BASIC COMPOSITION OF CZM PLAN

Map-based information on coastal and marine resources, processes and activities

- B: Engineering design standards
- C: EIA protocol
- D: Water quality standards
- E: Shoreline monitoring guidelines
- F: Watershed monitoring guidelines
- G: Shoreline management guidelines
- H: Cost-recovery options
- I: Public information and participation

A:

- J: Legislative arrangements
- K: Institutional mechanisms

(Many of the above information can be presented on a stretch by stretch, regio n specific or point-to-point basis on the GIS).

Table 1: Main Tasks in Technical Feasibility Study

COASTAL ENGINEERING	TERRESTRIAL WATER	MARINE WATER AND EIA	SOCIO-ECONOMICS	PILOT PROJECTS

IOC Workshop Report No. 103

Annex XI - page 23

1. Data acquisition	1. Data acquisition	1. Data acquisition	1. Develop Cost-	1. Evaluation of
* wind, wave, current, tide,	* Sewage,	* Sewage,	benefit analysis	engineering
sediments, bathymetry	Fertilizers,	Fertilizers,	model	options relative
	Pesticides,	Pesticides,		to coastal
2. Shoreline mapping	Hydrogeology,	lab capabilities	2. Tourism &	problems
S A S S S S S S S S S S S S S S S S S S	Lab capabilities,	* Reef & Seagrass	recreation	1
3. Wave climate	Ranking pollution	monitoring	* Demand/Supply	2. Select main
determination	Impacts	* Vegetation	* Beach requirement	options for
* Deep and nearshore	Impaced	identification	Dealerr requiremente	further
* West & South coasts	2. Measurement	racinerricación	3. Land use issues	experimentation
Webe a boath coubeb	programme	2. Marine ecosystem	* Regulations	experimentation
4. Tides & Water levels	* Surface flow	threshold	* Zoning	3. Design pilot
	* Rainfall	CHICBHOID	* Open access	projects
5. Coastal water circulation	* Subsurface flow	3. Environmental	* Coastal structures	projects
J. COAStal Water Circulation	* Water quality	impact analysis	& implications	* Beach face
6. Shoreline	sampling	pilot project	& Implications	dewatering
characterization	Sampiing	prior project	4 Ampluraia of (* Beach rock
		4. General	4. Analysis of / land use control	removal
* Sediment pathways,	3. Analysis &	environmental	Tand use control	* Submerged
transport rates	modelling		5. Public	breakwaters
* Shoreline predictions		scoping		
* Sand nourishment	4. Control options		participation	* Berm-type
resources	(evaluation)	5. CZM plan	programmes	revetment
	* Agriculture		6 9714 1	* Beach nourishment
7. Beach/coast improvement	management		6. CZM plan	* Reef rubble
techniques	* Sewage collection			clearing
* Structural	* Storm water			
* Non-structural	management			4. Modification of
* Drainage stabilization	* Education			existing
* Pilot project design	* Legislation			structures
8. Pilot project monitoring	5. CZM plan			5. CZM plan
				S. Chi piun
9. Maintenance practices				
10 Due investment desi				
10. Pre-investment designs				
11. CZM plan				

(Atherley, Smith and Nurse)

HOW TO HANDLE THE MASS OF DATA

We are	e simply dealing with large amounts of da	ata from numerous	locations.		
The da	ata has to be:				
	 analyzed for trends, patterns and rela Stored for later retrieval and analyse Prepared and pro cessed on spreads oceanographic and engineering programmes 	es; and heets, databases	, and spect	ific	
GIS wa	as conceived as being useful for: (combining the temporal and spatial data) (i	i))
	seeing various permutations of associat: (i assessing the potential for quantitative	i	i)
	FEATURES OF C	JIS SYSTEM			
A	U T O International drawing tool used by engin	-	A	D	:
	and planners.				
A	R C GIS builder running through Autocad. Bu	A uilds spatial	D		:
	coverages: points, lines, polygons etc	(see page 4).			
A	R C V Windows-based GIS presentation and manag		E CO	W	:
	query database, view and plot maps (see	pages 5 and 6).			
Н	A R D W 486 50 Mhz, 16mb RAM	А	R	E	:
	300MB Hard drive				
	Plotter and digitizing table				
	GIS ISSUES FO	R STARTERS			
(i)	Georeferencing standards and map scales				
(ii)	Vector and raster models				
(iii)	Consider your applications				
	(a)
	Store data (b)
	New perspectives/permutations (Development control and monitoring trend	c ds)
(iv)	Lineage of data and Quality control				
(v)	Inter-institutional support, especially	in Small Island	States		
	(Common ground	a)
	Common ground (b)

)

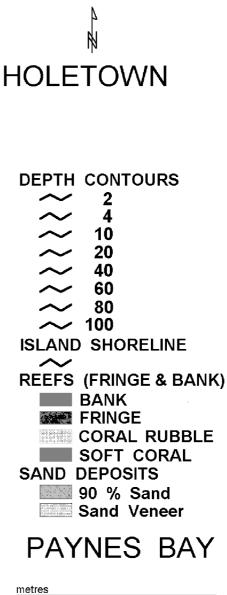
General standards		
(С)
Training		
(d)
Avoiding overlaps		
(e)
Cooperation between private and public	sectors	
(f)
Who owns the data		

Examples of CZM Application in Barbados

Some examples of CZM Applications in Barbados can now be illustrated:

(i)

- Flood Hazard Management
- (ii) Beach access Planning
- (i i i i Coastal Processes: beach changes


No	Coverage name	Geographic Feature	Respresentatio n	Attribute
	BATHYM	Depth contours	Line	Y
	BCHPRF2	Beach profile locations	Point	Y
	CURR_REC	BNG grid lines	Line	Y
	FOURSITE	Ocean bottom mapping	Polygon	Y
	MNTR_SC	Sub-catchments	Polygon	Y
	NRSHRNOD	Nearshore nodes(waves)	Point	Y
	PBEACH	Beach areas	Polygon	Ν
	REACH	Shoreline classification	Line	Y
	SANDBEDS	Sand bodies	Polygon	Y
	WAVEGRID	Wave refraction grids	Polygon	Ν
	WAVEREC	Wave recorder locations	Point	Y
	CST_STRU	Coastal structures	Point	Ν
	FLOOD	Flood maps for 100yr event	Polygon	Y
	OBGEO	Ocean bed geology	Polygon	Y
	CZONES	Water control zones	Polygon	Y
	GWUCATCH	Ground water catchments	Polygon	Y

MGWA	Major groundwater abstractions	Point	Y
RAINCONT	Annual rainfall contours	Line	Y
RAINSTN	Rain gauge stations	Point	Y
RIVER	River network	Line	Ν
SOILS	Soil associations	Polygon	Y
TERRA_WQ	Terrestrial water quality sites	Point	Y
ISLND_RD	Island Road Network	Line	Ν
LANDCOV	Land cover (4 classes)	Polygon	Y
LANDUSE	Land use	Polygon	Y
 LANDVAL	Land Parcels on coast	Polygon	Y
REEFS	Fringing and bank reefs	Polygon	Y

Sediment Distribution and Reefs

on the Barbados West Coast

1000

n

2000

Bear in mind t hat the analyses will mostly be related to the preparation of the CZM plan and obviously will focus on finding solutions, tracing patt erns and associations and for simply producing maps which look good.

PRACTICAL APPLICATIONS

Impacts of flooding on properties and the highway.

One of the challenges to CZM planning has to do with planning for emergency events. Hurricane events which drive storm surges have been known to flood important rea l estate and impose serious damage to coastal properties. GIS on Maps can show the impacts from a 1 in 100 year storm even t on the coast of Barbados, based on separate computer analyses on reached based bathymetry and surface typology. Maps can show how the coastal roads and buildings wou ld be affected, including hotels and critical facilities such as electrical generating plants, and oil storage and refinin g facilities.

The analysis is being extended to include an assessment of the value of properties that are at risk and recommendations will be made with respect to emergency response mechanisms:

- (i) Relocation of the fire and police stations out of a zone.
- (ii) Warning to hoteliers that they should take their guests to a safer zone during an event of similar magnitude.
- (iii) Pre-planning of likely access routes during these events.
- (iv) Building codes for properties in the area.

This example demonstrates the GIS' relevance to **emergency preparedness and hazards planning**.

Beach Access Planning

The provision of safe and comfortable beach accesses for the public is one of the expectations that people have of their government. The drive to develop the tourist industry in the island has reduced access space. A GIS map could show variation n among the 68 beach accesses on the west and south coasts of the island, some with h vehicular, lifeguard and changing facilities. On the south coast, while there are a lot of accesses (4/1km coastline on average), not many have the range of basi c services to make bathing safe, comfortable.

The analysis is being used to make recommendations on the need f or certain facilities along the coastline. This coverage will also be related to water quality and reef quality to ensure that people are encouraged to use healthy environments. Here the GIS can show its worth in **physical planning**.

Beach Changes

The CCU has been able to input point attribute data for over 100 beach profil e monitoring sites in the island. Attribute data attached to prof ile locations include information on when the profile started, the frequency of monitoring, raw data for each profile period (particularly beach width, volume and distance to the step), and regression coefficients (calculated in separate spreadsheet) of the beach chang e trend over the period for which data are available.

GIS maps can show trends for parts of the coast of Barbados coded as accreting and eroding sites. Such maps can show that a problem exists on the central part of the west coast, whereas most of the south coast is accreting and obviously in bette r condition. The reason, we believe, has to do with the fact that there is much more sand offshore of the south coast than off the west coast. Focussing on one of the west coast trouble spots, we can see the specific sites that are eroding, and also notice the offshore canyon which appears to be acting as a shute for removing sand from the already depleted nearshore.

Obviously, therefore, erosion prevention solutions and the appli cation of engineering technologies to build beaches in this area will have to look at the possibility of the pathway to the canyon through which sand is lost. The GIS in this case is a useful research and engineering design tool.

By:

Giulio Maffini

Key Technology Development

- Reducing The Cost Of Where
- Capturing The Data
- Using The Data

Reducing The Cost of Where

- Small Form Factor
- PCMCIA cards
- RS232 attached hand helds
- Low Cost (\$500)
- 10 to 30 meter accuracy
- Rapid capture of geo coordinates
- GUI based PC software now available for transparent data capture into applications

Portable Environmentally Tolerant Computers (PETC)

- Physically Tolerant
- Pen Enabled
- Docking Station, Dial Up, or Wireless Capable
- GPS Attached
- MS WINDOWS Field GIS Software now available (Pen Metrics, Bentley Systems, Buers)

PETC Pen Tablet Computers

- 3 to 6 pounds
- 80386, 80486, and PowerPC processors
- 4 to 32 megabytes of RAM
- 40 to 105 megabytes of hard disk
- 4 foot drop to concrete
- -25 C to 55 C
- Full sunlight to full darkness
- PCMCIA
- Keyboard and docking station expansion
- Sealed water proof and salt water resistant
- \$3595 to \$5995

Multitasking GUI Operating System Environments For PETC

• MS-WINDOWS

- MS-DOS 4.0 (late 1994)
- Chicago (June 1994)
- Cairo (1995)
- AIX
- OS/2
- General Magic

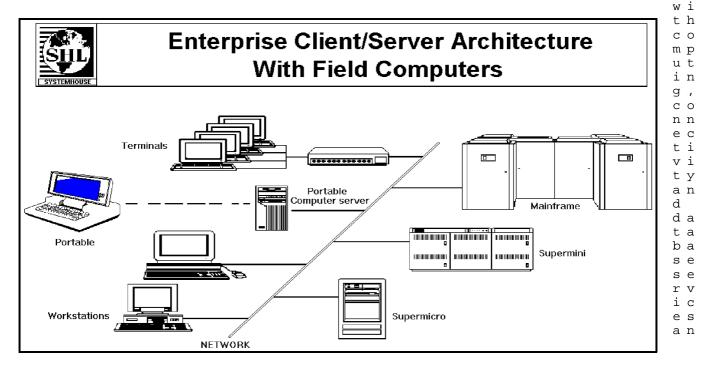
PETC Operating Environments

- PETC devices are ideal for use in:
- cars
- boats
- jeeps
- trucks

PETC and GPS technology promise a time in the near future when the knowledge o f "where" the user is transparently collected while using the PETC.

PETC Pen Tablet Vendors

- TUSK
- Kaleida
- Norand
- Telxon
- Micro State


All can withstand common elements of the island environment:

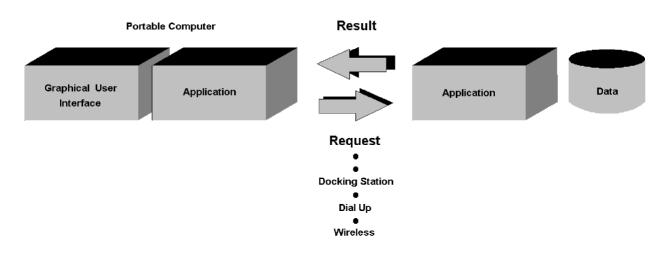
- * Sand
- * Dust
- * Salt Water
- * Heat & Full Sun

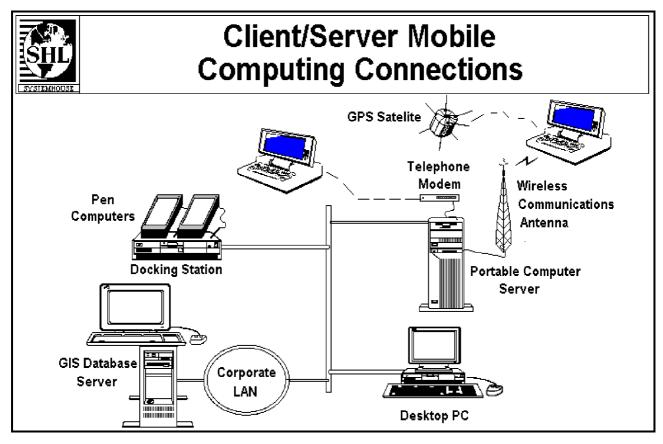
Client/Server Defined

" A CLIENT is a single user workstation, providing the user with presentatio n services and the appropriate computing, connectivity and database services an d interfaces relevant to the business need;

A SERVER is one or more multi-user proc essors with shared memory, providing the user

IOC Workshop Report No. 103


Annex XIV - page 32


d interfaces relevant to the business need;

CLIENT-SERVER COMPUTING is an environme nt in which the business need is satisfied by an appropriate allocation of the application processing between the client and server processors. The environment will typically be heterogeneous"

Client/Server Data Management

- Client/Server Topology
- Object Wrappers
- OSQL
- Object Relational Data Base Management Systems
- ODBC

Wireless Computing

GIS has histor ically ended at the office door. With the new technologies discussed here, full functionality GIS can be dep loyed to the field. These functions include:

- System access with map and data read/view only capabilities
- System access with map and data read/view and annotation capabilities
- System access using pen based computer interface and input forms
- System access with read/view, annotation, write, and modify capabilities;
- Full engineering tool set, including work order generation

Wireless Computing Options

		A	d	v a	n	t a	g e	s
	Limitations							
Т	r a	d	i	t	i	0 1	n a	1
	•	U b	i	q	u	i t	o u	S
	• Limited throughp	ut						
С	е	1	1	u		1	a	r
	• N	0	r	e s t	r	i c t	i o n	S
	• Congestion in ur	ban areas						
CDPD								
	• E n h • Not yet deployed		e d	c e	11	ular	d a t	a
	(more reliable)							
	• Inte • Lack of applicat		e d	voi	се	a n	d dat	a
	development							
D	e d	i		С	a	t	е	d
	•	R	е	1	i	a	b l	е

• Data only

IOC Workshop Report No. 103

Annex XIV - page 34

Annez	x XIV - page 34	
P	a c k e t - S w i t c h e • Short call setup tim	d e
	• Require specialized wireless	
	modems	
М	obile Network • Bill by message siz	s e
	• Limited packet size	
	• Integrated application	a
	• Limited coverage	C
	and communications	
S		d
	• Voice and dat	a
	• Vehicle based	
Μ	obile Radio	S
	• Limited coverage	_
S		d h
Netwo	• Expensive orks	
P	a g i n	g
	• Alphanumeric messagin • One-way transmission only	g
	• One-way transmission only	
	capability	
	• Economical messag	е
	• Limited message size	
	broadcast	
_		

Two Approaches To Building the Database

- Layer/Theme Model
- Feature/Object Model

Layer Theme Model

- Map Makers Model
- Open Ended by Definition
- No Explicit Structure Implied
- Ambiguous/Redundant

Feature/Object Model

- Database Builders Model
- Formally Defined At Outset
- View Of Themes Can Be Generated
- Effort Required To Define Robust Structure

Migrating From Layers to Features

- Explicit Definitions Required
- Ambiguity Removal Process/Procedure
- Complexity Reduction
- Unique Conditions
- PATN

Digital Still Photography

- Cameras Today:
- 600 dpi
- 64 shades of gray
- 350 grams
- serial port export
- \$695
- Cameras In The Next Two Years:
- 1200 dpi
- 16.8 million colours
- 300 grams
- serial port export
- PCMCIA storage/transfer
- **\$**795

Voice Recognition

- In the next two years we will have:
- 2000 word vocabulary or more
- Speaker independence
- 80 words per minute input recognition rate

IOC Workshop Report No. 103

Annex XIV - page 36

- user definable vocabularies for vertical applications
- background noise filtering
- context sensitivity with real time dictionary look-up
- Iow cost PC solution \$500 \$1,000

Geographic Data Agents

- What They Are
- Why We May Need Them
- Examples Of What They May Achieve

Just Imagine....

- Using a pen computer underwater while updating a map of a coral reef...
- Walking down a beach with a portable computer and updating a map of beach erosion...
- Taking digital pictures of recreation areas and potential land development areas...
- And then transferring this information to your GIS database without using
 - a single piece of paper....

Stop Imagining! Its here today....

Current Status and Future Development of Remote Sensing and GIS at the South Pacific Applied Geoscience Commission (SOPAC)

Notes prepared for the Workshop on GIS Applications in Coastal Zone Management of Small Island States Barbados 20-22 April, 1994

PURPOSE OF NOTES

To provide information on the background, current status, and future developments of Remote Sensing and Geographic Information Systems at SOPAC.

BACKGROUND

Remote Sensing is the acquisition of images of the earth by aerial or space borne vehicles with various types of sensors and a Geographic Information System (GIS) is the application where the data from remote sensing is most effectively stored and manipulated. A GIS should contain and relate both the spatial and tabular data and should provide users with the ability to obtain information by the query of spatial and tabular objects.

GIS have become essential tools for member governments where accurate and timely information is needed to assist in the resource management and policy development.

Remote sensing is closely linked with GIS and in many cases they cannot be separated.

REMOTE SENSING

Several pilot projects have been undertaken at SOPAC to process satellite imagery and hardware and software has been acquired and developed over the last two years where the processing of such imagery is now a routine task.

The major constraint in acquiring satellite images from the main suppliers such as SPOT and EOSAT is the cost of each image which is of the order of US \$2,500. A Remote Sensing User Group with representatives from the regional organisations and other groups (FFA, SOPAC, SPC, SPREP, SPT and LATICAL) has been meeting regularly via PEACESAT during the last 6 months to determine a cost effective method of data procurement and sharing as well as provide a catalogue of existing images.

Discussions with both SPOT and EOSAT have determined that a user group comprising the regional organisations could purchase a single image and share that image for an additional 15% or US \$375 approx. Payment of this same 15% would enable the sharing of existing images where there are currently in excess of 50 images held by SPT in Tahiti and LATICAL in New Caledonia where SPT has data from Fiji, while LATICAL has data from Vanuatu and New Caledonia.

SOPAC has been providing assistance to Forestry, Agriculture and Mineral Resources Department in Fiji as well as arranging remote sensing workshops for the member countries. It is anticipated that future satellite imagery will be processed and made available to member countries as additional GIS data.

The Fiji User Group Remote Sensing and GIS Newsletter was started in November 1993 to provide a forum for exchange of ideas and information for users in Fiji and the region. It is compiled, edited and produced at SOPAC every month with a current mailing list of 300 within the region which includes regional organisations, member country representatives, other interested parties and members of Fiji's user group

who meet monthly . It is anticipated that it will be an ongoing activity

GEOGRAPHIC INFORMATION SYSTEM

SOPAC has developed an organisation-wide GIS which includes the following data: coastlines, bathymetry, EEZ boundaries, survey vessel tracks, beach surveys, satellite imagery, aerial photographs, and wave energy. Some of these data sets such as vessel tracks are themselves part of management databases and include further information containing magnetic, gravity and shot point seismic data as well as catalogues of off-line mass storage media containing the actual acquired data.

All ACP member countries have been provided with the necessary computer equipment for operating and developing GIS and extensive data sets have been included with their equipment.

New and updated data will be provided on an ongoing basis and in particular there are plans to supply additional equipment so that member countries can receive the large bathymetric data sets from the SOPACMAPS survey where this data will be in a readily accessible GIS format.

There has been close cooperation with other regional organisations, in particular with the Forum Fisheries Agency in the Exclusive Economic Zone delimitation program as well as Fiji Government departments of Agriculture, Forestry, and Mineral Resources.

ASSISTANCE TO MEMBER COUNTRIES

SOPAC provides assistance to member countries in resources assessment and management, and applied environmental geoscience in ocean, coastal, and onland areas, and includes resource inventory acquisition, resource management, and coastal zone management. Field work, data management, training, and technology transfer are an integral part of most projects.

A major project has been the South Pacific Marine Resources Program which comprises seabed mapping and equipment support. The project has been funded under Lorne III of the European Community and is part of an ongoing program to assist the member countries in resource management and sustainable development.

The seabed mapping project named SOPACMAPS covered some 340,000 square km of ocean in the waters of Fiji, Solomon Islands, Tuvalu and Vanuatu and has provided imagery, bathymetry, gravity, magnetism and seismic reflection data. The data will be received at SOPAC during April and May 1994, and will be integrated with the existing GIS, and distributed to the member countries where it will be used to assist in evaluating marine minerals and hydrocarbon potential, fishing industry development, improved navigation, map production, and natural disaster prediction.

Another component of the South Pacific Marine Resources Program has been the provision of appropriate computer equipment to the member countries and together with suitable training will enable the countries to better manage their resource and related data through the use of GIS.

The data from SOPACMAPS will be distributed on CD-ROM to the member countries and other organisations and CD-ROM readers and upgraded software will be provided under an additional subproject. This new equipment will further enhance the capabilities of the member countries where funding for the sub-project has been provided by the EC.

COMMUNICATIONS

Effective communications are vital in the region where international telecommunications circuits are expensive and national telecommunications often unreliable. SOPAC plans to install a PEACESAT terminal in 1995 which will allow connection to the existing network as PEACESAT terminals are already installed in all member countries.

PEACESAT is a non commercial communications network which provides 9 simplex voice and full duplex voice/data circuits and utilizes obsolete weather satellites and low cost 3 meter dishes. The headquarters are in Honolulu and there are

currently 35 ground stations throughout the Pacific. There are no transmission charges and the current cost of a ground station is US \$28,000. There are plans to upgrade the service in 1995 to more effectively utilize the available bandwidth of the satellite. The 3 meter dishes will be upgraded to provide more voice and data circuits and a new series of 6 metre hubs is planned which will offer multiple sessions at the ground station and feature video and packet switching.

HARDWARE AND SOFTWARE

SOPAC has an organization-wide network which connects all users to the main file server. Users are provided with 386 and 486 PC desktops and field officers with 486 notebooks. The file server has Novell Netware 3.11 as the network operating system while users have Windows for Workgroups 3.11. This configuration allows sharing of corporate and group data and provides resource sharing. The corporate standard software is Microsoft Office and the corporate database is Microsoft Access which is connected to MapInfo as the mid level GIS. The high end GIS is Arc/lnfo and ERDAS. All software with the exception of Arc/Info and ERDAS is Microsoft Windows based and other tools include AutoCAD, Corel Graphics and Surfer.

A SUN workstation is used for data conversion and has peripheral devices which accept all major mediums including CD-ROM, tapes, cartridges.

The system is extremely flexible and as an example, a user in one section can query the central GIS and send output to a colour printer in another section.

The equipment provided to member countries are PC desktop computers with identical software to that utilised at SOPAC where MapInfo is the GIS of choice.

SUMMARY

SOPAC has been actively involved in remote sensing and acquiring and processing satellite images over the past two years as well as developing and operating a comprehensive GIS. This organization is assisting member country governments and other regional organisations as well as the commercial sector in the development of this technology and provision of services. Specialist areas include coastal zone management, offshore minerals, offshore hydrocarbons, survey cruise coordination, and map and publication production. The focus of future direction is sustainable development and climate change monitoring.

The main points are:

- SOPAC has developed an organization-wide information system, of which GIS is a major component. This information system named the SOPAC Regional Data Centre is currently accessible to all staff and is planned to be accessible to the member countries in 1995 through the PEACESAT communications network.
- (ii) The Wave Energy Program has provided ocean wave data from waverider buoys located at six locations in the Pacific. These data were collected by satellites and stored daily by ARGOS in its databank in Australia from where it was downloaded by SOPAC.
- (iii) Deepsea mineral surveys have been undertaken and data have been analyzed by SOPAC and maps produced.
- (iv) Several member countries have been supplied with equipment and training. The equipment includes 486 PCs and mid range GIS.
- (v) SOPACMAPS swath seafloor survey has been completed and data will be received during April and May 1994 from the contractor and integrated into SOPAC's GIS. Selected data will then be distributed on CD-ROM to member countries and other organisations. Member countries will receive equipment upgrades.
- (vi) A GIS and Remote Sensing Newsletter is published monthly to serve the needs of the Fiji and the South Pacific Region.
- (vii) A formal user group consisting of representatives from FFA, SOPAC, SPREP, SPC, LATICAL and SPT is being established to purchase satellite

images, with an additional copyright being paid so that the image becomes shared among the community of users.

ACRONYMS

EC		
	European Community	
EOSAT		
FFA	Earth Observation Satellite Company (Landsat data)	
FFA	Forum Fisheries Agency	
JICA		
	Japanese International Cooperation Agency	
L		L
NORAD	LAboratoire de Traitement d'Image CALédonien	
NORAD	Norwegian Agency for International Development	
SOPAC		
	South Pacific Applied Geoscience Commission	
SPC	South Pacific Commission	
SPOT	South Pacific Commission	
	Système Pour l`Observation de la Terre	
SPREP		
	South Pacific Regional Environment Program	
SPT	Station Polynésienne de Télédétection	

CONCLUDING REMARKS

BY

THE HONOURABLE SENATOR HARCOURT LEWIS, MINISTER OF THE ENVIRONMENT, HOUSING AND LANDS BARBADOS, APRIL 22, 1994

Mr. Chairman, Representatives of the Government of Canada, th e Intergovernmen tal Oceanographic Commission (IOC) and the United Nations Environment Programme (UNEP), Participants, ladies and gentlemen:

Let me first e xtend a warm welcome to you all on behalf of the Government and people of Barbados, even though this workshop is now approaching its final stages. I wish to assure you that my Government is heartened by the decision of the organizers of the programme to convene the workshop here, for I am sure that the outcome of you r deliberations will assist in the design of strategies geared to the achievement of sustainable development. And as you are all aware, this will be the focus of our a ctivities over the next two weeks, when the Global Conference on SIDS takes place here in Barbados.

This workshop could not therefore have been convened at a more opportune time. For more and more, it is becoming abundantly clear that our survival depends on prudent manage ment of all of our resources, both natural and man-made. And in this process, we must employ the best available tools, as long as the y are appropriate and relevant to our circumstances. It is for this reason that I am firmly of the view that state-of-the-art tools such as Geo graphic Information Systems have a vital role to play in the improvement of our data management capability, and in the provision of decision-making support.

I am particularly pleased that the theme of the workshop is GIS applications in coastal management of small island states. As in the case of any other smal 1 island developing state, Barbados is fully aware of the importance of its coasta 1 resources to national economic and social development. We exploit our coastal and marine zone in a variety of ways: for fishing, housing, industry (e.g. flou r milling, cement manufacture, rum and pe troleum refining), tourism and recreation, to name a few. In addition, critical infr astructure such as our air and sea ports are located on the coast.

It is against this background that my Government has been actively seeking to ensure, that the resources of this country are exploited and man aged in a sustainable way. And this is precisely why the Government has committed a substantial body of resources for the implementation of a comprehensive coastal zone management project for the island. The current phase of that programme, which commenced in 1991, i s being funded jointly by the Government of Barbados and the Inter -American Development Bank to the tune of approximately US \$7.3 million. This programme has four mai n components:

i) (A technical, scientific study of various processes and phenomena which impact on the coastal system: i) (The construction and evaluation of selected pilot projects, to determine their effectiveness and applicability as coastal protection measures, in the context of our local conditions;) i (i An institutional strengthening component which evaluates the efficiency of the current arrangements for coastal resources management, including existing legislative provisions. Indeed,

IOC Workshop Report No. 103 Annex XVI

)

at the present time the Attorney General's Chambers are currently in the process of finalising a Coastal Zone Management Bill and a Marine Pollution Control Bill, for submission to Parliament. (i v The preparation of an effective, implementable Coastal Zone Management Plan for Barbados.

Ladies and Gentlemen, I would be the first to admit that like many othe r states, both developed and developing, we could have been more careful in th е exploitation of our coastal resource base. We have knowingly and unknowingl У contributed to the loss of some of our coral reefs and most of our coastal wetlands; and in the last few decades we have wit nessed some degree of erosion of some of our finest beaches. To reverse these proc esses, we require a reliable, wide-ranging, scientific information base, for prudent decision-making. We can think of n 0 potentially better tool than the Geographic Information System, as a means o f storing, retri eving and processing the required mass of data, efficiently. Thus, it is my earnest hope that this workshop will be regarded by all participants, as a n integral part of the process of capacity building and technology transfer, in small island developing states. Indeed, Agenda 21 of the Rio Declaration specificall У identifies the application of appropriate Geographic Information Systems and remote sensing technologies, as vital components of sustainable development strategies In a sense, we are therefore witnessing positive action in your workshop to implement that commitment given at Rio.

Permit me however, to sound a note of caution at this point. Whi le we recognize the versatility of the technology, let us not forget that it does not constitute an end in itself, but simply a means to an end. We must still continue to focus o n quality research, using 'traditional' methods, as our primary means of obtainin reliable data that can withstand rigorous, scientific scrutiny. However useful a tool the Geographic Information System might be, it will not enhance the quality o f decision-making, if it is fed data of dubious quality. I therefore wish to suggest that any such technology transfer and capacity building in small island developing states, must be pursued on two fronts. For while training in the use of the 'new' technology proceeds, there must be a simultaneous commitment t o improvement in data quality control. Experience in Barbados has taught us that this is the sensibl e route to travel .

I suspect that by now you would have realised that Geographic Informatio n Systems technology has been warmly embraced by my Ministry. We are acutely awar е that Government's commitment of taxpayers' money is based firmly on the conviction that there will be a better quality product. In these tough eco nomic times and with a growing list of priorities, Government must allocate funds whe re it will be assured of getting best value for its money. Happily, in the case of the Coastal Conservation efforts, our c onfidence has been well placed. The Arc CAD system which the Coastal Conservation Unit currently uses, had b ecome a functional and indispensable tool for routine data management, analysis, modelling and graphic presentation of spatia ٦ information. In fact, I wish to take this opportunity to extend an invitation to all who will be remaining for the SIDS conference, to view the Unit's exhibit and GI S slide show, at the Village of Hope at the Community College.

Ladies and Gen tlemen, it is heartening to note the large number of issues you have dealt with during the last three days. They cover areas ranging from dat a management needs, evaluation of GIS sys tems, strategies for building and maintaining GIS data bases to capacity building and technology transfer. But what I think i s most gratifyin g, is the fact that the discussion has remained focussed on the needs of small island developing states. I therefore urge you to use a ppropriate, available fora to ensure that the critical recommendations of this workshop are disseminated during the coming two weeks, and beyond.

Ladies and Gentlemen, it is my understanding that all the main objectives of the workshop have been achieved, some to a lesser extent than others. I have been further informed that it was never the expectation of the organ izers, that you could become a graduate class of 'GIS and Coastal management experts`, after only thre e days. Nevertheless, I am confident that you are now in a much better position t o evaluate critically the relevance and applicability of the available tools to your own individual island situations.

This alone will be useful, since as resource managers you will all be face d inevitably with the problem of allocating scarce resources for maximum effect.

Finally, I bel ieve that we in the Caribbean region, as well as our colleagues from the Pacif ic who are present with us, owe a debt of gratitude to the Department of Fisheries and Oceans, Canada, for ta king the initiative to convene this workshop. I confidently expect that this exercise will be the beginning of a process, that will prove benefici al to all parties. Sustainable development is a goal that can best be achieved through the exchange of ideas and relevant experiences, because, throug h this medium, costly mistakes can be avo ided, especially by countries which can least afford them.

Ladies and Gentlemen, I thank you.