Intergovernmental Oceanographic Commission Technical series

35

Global Sea Level Observing System (GLOSS) Implementation Plan

Unesco 1990

The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariats of Unesco and IOC concerning the legal status of any country or territory, or its authorities, or concerning the delimitations of the frontiers of any country or territory.

For bibliographic purposes this document should be cited as follows: Global Sea Level Observing System (GLOSS) Implementation Plan, *IOC Tech.Ser. 35*, Unesco, 1990 (English. Summary in E, F, S, R)

Published in 1990 by the United Nations Educational, Scientific and Cultural Organization, 7 place de Fontenoy, 75700 Paris Printed in Unesco's Workshops © Unesco 1990 Printed in France

Contents

Summary	5
1. Introduction	13
2. GLOSS Objective and Elements	15
2.1 Objective 2.2 Elements	
3. Application for Scientific and Practical Purposes	17
 3.1 Long-term Climate Studies and Practical Recent Vertical Crustal Movements 3.2 Requirements of the WCRP: TOGA and WOCE 3.3 National and Regional Benefits 	19
4. Global Sea-Level Observing System	23
 4.1 GLOSS Network 4.2 Measurement Techniques and Requirements 4.3 Absolute Sea-Level Network 4.4 GLOSS Sea-Level Stations 4.5 Other Programmes with Sea-Level Components 	23 30 30
5. Sea-Level Data Collection and Exchange	39
5.1 General Scheme for Data Collection and Exchange5.2 Formats for Data Exchange	
6. Sea-Level Products Preparation and Dissemination	41
 6.1 The Permanent Service for Mean Sea Level 6.2 TOGA Sea Level Centre 6.3 WOCE Sea Level Centre 6.4 Specialized Oceanographic Centre (SOC) for IGOSS 	41 42
 Sea Level Programme in the Pacific 6.5 Specialized Oceanographic Centre for the IGOSS Sea Level Pilot Project in the North and Tropical Atlantic (ISLPP/NTA) 6.6 International Hydrographic Organization 	42
7. Development Components	49
8. International Co-ordination and Management Mechanism	51
8.1 National and International Contact Points for GLOSS 8.2 The IOC Group of Experts on GLOSS	51
9. Action Plan	53
Annexes	

I.	Reference and Bibliography	55
	GLOSS Questionnaire	
	List of National and International Contacts Points for GLOSS	
IV.	Other Programmes with Sea-Level Components	69

V .	List of Suppliers of Tide Gauge Equipment	77
VI.	Standard GF3 Subset for Mean Sea-Level (PSMSL)	79
VII.	Recommendations for Contributing Data	
	to the Permanent Service for Mean Sea Level	83
VIII.	Recommendations for Sea-Level Data Submission	
	to the SOC for ISLP PAC and TOGA Sea-Level Centre	85
IX.	Mechanism for Co-ordination of the GLOSS Implementation	
Х.	WOCE Sea Level Network	89

.

Summary

The Global Sea Level Observing System (GLOSS) is, based on an international network of sea level measuring stations, co-ordinated by IOC. It provides high quality standardized data from which valuable sea level data products are produced for international and regional research programmes as well as for national practical applications.

Global measurements of sea level are necessary to monitor possible dramatic increases due to global warming. Coastal sea level measurements are vital for hydrographic surveys and can also give indications of ocean circulation patterns and climate variability.

The elements of GLOSS are:

(i) the global network of permanent sea level stations for obtaining standardized sea level observations; this forms the primary framework to which regional and national sea level networks can be related;

(ii) data collection for international exchange with unified formats and procedures which may include nearreal-time data collection;

(iii) data analysis and product preparation required for scientific and/or practical applications;

(iv) assistance and training for establishing and maintaining sea level stations as part of GLOSS and improving national sea level networks;

(v) a selected set of GLOSS tide gauge bench marks shall be accurately connected to a global geodetic reference system (i.e. the conventional terrestrial reference frame, established by the International Earth Rotation Service (IERS)).

1. GLOSS OBJECTIVE

The plan is to establish by 1990 an operational global network of permanent sea level stations reporting monthly mean averages to the Permanent Service for Mean Sea Level (PSMSL). This network will be the framework for other regional and scientific programmes such as the Tropical Ocean and Global Atmosphere (TOGA) programme and the World Ocean Circulation Experiment (WOCE). As programmes are developed and implemented, certain GLOSS stations will be upgraded to near-real-time transmission of data to be used by national and regional centres for analysis and prediction of oceanographic and atmospheric phenomena.

The major requirements for GLOSS stations are: (i) sampling of sea level, averaged over a few minutes (to avoid aliasing), at intervals of 15 minutes, is recommended; but in all circumstances the minimum sampling interval should be one hour; (ii) gauge timing should be compatible with level accuracy, which means an accuracy of 1 minute;

(iii) tide gauges which must measure sea level relative to a fixed and permanent local gauge Bench Mark. This should be connected to a number of Auxiliary Marks to guard against its movement or destruction. Connections between the Bench Mark and the gauge zero should be made to an accuracy of a few millimetres every six months;

(iv) the readings of individual sea levels should be made with a target accuracy of 10 mm;

(v) gauges should be equipped for averaging and rapid sampling; they should also be equipped for automatic data transmission to data centres in addition to the sea level recording on site;

(vi) sea level measurements should be accompanied by observations of atmospheric pressure, and also winds and other environmental parameters, which are of direct relevance to the sea level data analysis.

As data products are made available and analysed, the correlation of mean sea level to climatic phenomena will become clearer, as will the application for forecasting. This along with advancement of technology should result in the eventual upgrade of all stations to near-real-time delivery of data.

2. OPERATION

Member States of IOC agreeing to participate in GLOSS are required to:

(i) have all operating GLOSS stations reporting monthly mean sea level data values to the Permanent Service for Mean Sea Level (PSMSL) within one year of acquisition;
(ii) make hourly values of sea level data available for international exchange;

(iii) upgrade existing stations which are below GLOSS standards; (iv) install new stations in consultation with the IOC Group of Experts on GLOSS;

(v) give the highest priority to the implementation of those stations in GLOSS which are required for international programmes, for example TOGA and WOCE;

(vi) provide assistance to other member states on a bilateral and multilateral basis. Assistance may also be provided by Member States through the IOC Voluntary Co-operation Programme thus enabling other Member States to participate in GLOSS.

The GLOSS Implementation Plan indicates the stations that will constitute the GLOSS network. Member States responsible for these stations have been requested, and in majority of the cases have already made a commitment, to establish fully qualified GLOSS stations. They have also expressed their commitment towards eventually establishing fully qualified GLOSS stations, where they do not already exist, and to ensure that their operation and functioning are in accordance with the provisions of the Plan. The IOC through the Group of Experts on GLOSS and the Secretariat ensures regular review of the GLOSS development, implementation and co-ordination with other international programmes.

This GLOSS Implementation Plan was approved by the Intergovernmental Oceanographic Commission at the Fifteenth Session of its Assembly by Resolution XV-8.

Résumé

Le Système mondial d'observation du niveau de la mer repose sur un réseau international de stations marégraphiques dont la COI assure la coordination. Il fournit des données normalisées de qualité à partir desquelles sont élaborés des produits utiles pour les programmes de recherche internationaux et régionaux, de même que pour les applications pratiques à l'échelle nationale.

Il est indispensable de procéder dans le monde entier à des mesures du niveau de la mer pour déceler de possibles élévations spectaculaires dues à un réchauffement de la planète. Le long du littoral, ces mesures sont cruciales pour les levés hydrographiques et peuvent également donner des indications sur la circulation océanique et la variabilité du climat.

Les activités et composantes du GLOSS sont les suivantes :

(i) le réseau international de stations marégraphiques permanentes qui permet de procéder à des observations normalisées du niveau de la mer; il constitue une ossature centrale à laquelle peuvent se rattacher les réseaux nationaux et régionaux;

(ii) la collecte de données en vue de leur échange international en utilisant des formats et des procédures unifiés, y compris éventuellement la collecte de données en temps quasi réel;

(iii) l'analyse des données et l'élaboration des produits nécessaires aux applications scientifiques et/ou pratiques; (iv) une assistance et une formation pour la création et l'exploitation de stations marégraphiques dans le cadre du GLOSS et pour l'amélioration des réseaux nationaux; (v) des repères marégraphiques sélectionnés pour le GLOSS, qui seront reliés d'une manière précise à un système mondial de référence géodésique (par exemple, le cadre de référence terrestre conventionel établi par le International Earth Rotation Service (Service international de la rotation de la terre-IERS).

1. OBJECTIF DU GLOSS

On compte mettre en place d'ici à 1990 un réseau mondial opérationel de stations permanentes d'observation du niveau de la mer transmettant des moyennes mensuelles au Service permanent du niveau moyen des mers (PSMSL). Ce réseau fournira un cadre à d'autres programmes régionaux et scientifiques, tels que celui sur les océans tropicaux et l'atmosphère globale (TOGA) et l'Expérience sur la circulation océanique mondiale (WO-CE). Au fur et à mesure de l'élaboration et de la mise en œuvre des programmes, certaines stations du GLOSS seront modernisées de manière à assurer la transmission en temps quasi réel des données que les centres nationaux et régionaux utiliseront pour analyser et prédire les phénomènes océanographiques et atmosphériques.

Les stations GLOSS doivent répondre aux principaux impératifs suivants :

(i) un échantillonnage du niveau de la mer moyenné sur quelques minutes (afin d'éviter des distorsions) de repliement est recommandé à des intervalles de 15 minutes étant entendu que cet intervalle ne devrait en aucun cas excéder une heure;

(ii) le minutage des jauges doit être compatible avec le niveau de précision, ce qui implique une précision d'une minute;

(iii) les marégraphes doivent fournir des mesures du niveau de la mer rapportées à un repère local permanent et fixe qui est relié à un certain nombre de repères auxiliaires de manière à se prémunir contre les risques de déplacement ou de destruction. La correspondance entre le repère et le zéro du marégraphe doit être vérifiée tous les six mois, la précision devant être de quelques millimètres; (iv) les relevés des différents niveaux de la mer doivent tendre vers une précision de 10 mm;

(v) les marégraphes doivent être dotés de dispositifs permettant d'assurer un moyennage et un échantillonnage rapide ainsi que la transmission automatique des données à des centres en plus de l'enregistrement du niveau de la mer *in situ*;

(vi) les mesures du niveau de la mer doivent s'accompagner d'observations de la pression atmosphérique, des vents et d'autres paramètres environnementaux ayant un intérêt pour l'analyse des données relatives au niveau de la mer.

A mesure que les produits seront obtenus et analysés, la corrélation entre le niveau moyen de la mer et les phénomènes climatiques ainsi que ses applications à la prévision deviendront plus claires. Cette évolution, jointe aux progrès de la technologie, devrait déboucher à terme sur la modernisation de toutes les stations en vue d'atteindre l'objectif d'une fourniture des données en temps quasi réel.

2. FONCTIONNEMENT

Les États membres de la COI acceptant de participer au GLOSS sont invités :

(i) à faire en sorte que toutes leurs stations GLOSS en service fournissent des valeurs moyennes mensuelles du niveau de la mer au Service permanent du niveau moyen des mers (PSMSL) dans l'année qui suit leur acquisition; (ii) à fournir, en vue d'échanges internationaux, des valeurs horaires du niveau de la mer;

(iii) à moderniser les stations existantes qui ne sont pas conformes aux normes du GLOSS;

(iv) à mettre en place de nouvelles stations en consultation avec le Groupe d'experts de la COI sur le GLOSS;
(v) à accorder la plus haute priorité à la mise en exploitation, dans le cadre du GLOSS, des stations indispensables à l'exécution de programmes internationaux tels que TOGA et WOCE;

(vi) à fournir à d'autres Etats membres une assistance bilatérale et multilatérale et/ou par le truchement du Programme d'assistance volontaire de la COI afin de leur permettre de participer au GLOSS. Le Plan de mise en œuvre du GLOSS donne la liste des stations qui constitueront le réseau. Les États membres, qui ont la responsabilité de ces stations ont été invités-et pour la plupart se sont déjà engagés-à mettre en place à terme des stations du GLOSS remplissant toutes les conditions voulues et à en assurer l'exploitation et le fonctionnement conformément aux dispositions du Plan.

Par l'intermédiaire du Groupe d'experts sur le GLOSS et de son Secrétariat, la COI suit régulièrement l'évolution et la mise en œuvre du GLOSS et sa coordination avec d'autres programmes internationaux.

Le Plan de mise en œuvre du GLOSS a été approuvé par la Commission océanographique intergouvernementale lors de la quinzième session de son Assemblée par la Résolution XV-8.

Resumen

El Sistema Mundial de Observación del Nivel del Mar (GLOSS) consiste en una red internacional de estaciones de medición del nivel del mar coordinada por la Comisión Oceanográfica Internacional (COI). Proporciona datos normalizados de elevada calidad a partir de los cuales se elaboran valiosos productos de datos sobre el nivel del mar que se utilizan en programas de investigación internacionales y regionales, así como para aplicaciones prácticas en los distintos países.

Es preciso realizar mediciones mundiales del nivel del mar para poder detectar cualquier posible aumento excepcional ocasionado por el recalentamiento de la tierra. Las mediciones del nivel del mar litoral son imprescindibles para llevar a cabo estudios hidrográficos y pueden proporcionar asimismo indicaciones sobre las pautas de circulación del océano y la variabilidad del clima.

El GLOSS se compone de los siguients elementos: (i) la red mundial de estaciones permanentes de medición del nivel del mar, dedicadas a realizar observaciones normalizadas del nivel del mar; esta red constituye el marco fundamental con el que pueden conectar las redes regionales y nacionales;

(ii) el acopio de datos que se intercambian internacionalmente, en formatos y mediante procedimientos unificados, que puede comprender el acopio de datos en tiempo real aproximado;

(iii) el análisis de los datos y la elaboración de los productos necesarios para las aplicaciones científicas y/o prácticas;

(iv) la asistencia y formación para la creación y mantenimiento de estaciones de medición del nivel del mar que formen parte del GLOSS, así como para mejorar las redes nacionales;

(v) se conectará con precisión un conjunto escogido de cotas de referencia para maréografos del GLOSS a un sistema mundial de referencia geodésica (esto es, el marco de referencia terrestre convencional fijado por el Servicio Internacional de Estudio de la Rotación de la Tierra. (IERS)).

1. OBJETIVO DEL GLOSS

Está previsto que antes de 1990 funcione una red mundial de estaciones permanentes de medición del nivel del mar que comuniquen mensualmente los promedios de dicho nivel al Servicio Permanente del Nivel Medio del Mar (PSMSL). Esta red servirá de estructura a otros programas regionales y científicos como el relativo a los Océanos Tropicales y la Atmósfera Mundial (TOGA) y el Experimento Mundial sobre la Circulación del Océano (WOCE). Conforme se desarrollen y ejecuten los programas, se modernizarán algunas estaciones del GLOSS a fin de que los centros nacionales y regionales utilicen la transmisión de datos en tiempo real aproximado para efectuar análisis y predicciones de los fenómenos oceanográficos y atmosféricos.

Las estaciones del GLOSS deberán cumplir las siguientes condiciones mínimas:

(i) se recomienda promediar el muestreo del nival del mar durante varios minutos (para evitar la aparición de alias, esto es, señales espúreas), a intervalos de 15 minutos, pero, en todo caso, el intervalo mínimo entre cada toma de muestras deberá ser de una hora;

(ii) la sincronización de los mareógrafos deberá ser compatible con la exactitut de la medición de los niveles, esto es, un margen de un minuto;

(iii) los mareógrafos deben medir la relación del nivel del mar con una cota de referencia local fija y permanente, conectada a diversas cotas auxiliares para evitar su desplazamiento o destrucción. Las conexiones entre la cota de referencia y el nivel cero del mareógrafo deberán ajustarse cada seis meses, con un margen de precisión de pocos milímetros;

(iv) las lecturas de los distintos niveles del mar deberán efectuarse con un margen máximo de diez milímetros de diferencia con el objetivo;

(v) los mareógrafos deberán poder efectuar los promedios y muestreos con rapidez, asimismo, deberán poder transmitir automáticamente los datos a los centros de datos, además de registrar el nivel del lugar en que están situados;

(vi) las mediciones del nivel del mar deberán conjugarse con observaciones de la presión atmosférica, así como de los vientos y demás parámetros ambientales, que son de pertinencia directa para el análisis de los datos relativos al nivel del mar.

Conforme se disponga de los datos y éstos sean analizados, irá resultando más clara la correlación entre el nivel medio del mar y los fenómenos climáticos y su aplicación para formular previsiones. Esta circunstancia, junto con los progresos de la tecnología, hará que a la larga todas las estaciones se modernicen para poder transmitir datos en tiempo real aproximado.

2. FUNCIONAMIENTO

Los Estados Miembros de la COI que convengan en participar en el GLOSS deberán:

(i) conseguir que todas las estaciones del GLOSS en funcionamiento transmitan los valores de los datos men-

suales sobre el nivel medio del mar al Servicio Permanente del Nivel Medio del Mar (PSMSL), a más tardar al año de su obtención;

(ii) poner los datos sobre los valores horarios del nivel del mar a disposición de los interesados en el intercambio internacional;

(iii) modernizar las estaciones que no cumplan los requisitos fijados para participar en el GLOSS;

(iv) instalar nuevas estaciones, en consulta con el Grupo de Expertos sobre el GLOSS de la COI;

(v) asignar máxima prioridad a las estaciones de ejecución del GLOSS necesarias para llevar a cabo los programas internacionales, como TOGA y WOCE;

(vi) prestar ayuda a los restantes Estados Miembros, de carácter bilateral y multilateral, así como por conducto del Programa de Cooperación Voluntaria de la COI, para que puedan participar en el GLOSS. En el Plan de Ejecución del GLOSS se indican las estaciones que formarán la red del GLOSS. Se ha pedido a los Estados Miembros encargados de esas estaciones -que en su mayoría han demostrado buena disposiciónque establezcan estaciones del GLOSS plenamente equipadas o que se comprometan a establecer, en su momento, estaciones de tales características, y que velen por su funcionamiento conforme a lo dispuesto en el Plan.

Por conducto del Grupo de Expertos sobre el GLOSS y la Secretaría, la COI supervisa periódicament la evolución y ejecución del GLOSS, así como su coordinación con otros programas internacionales.

Este Plan de Ejecución del GLOSS ha sido aprobado por la Comisión Oceanográfica Intergubernamental durante la 15a reunión de su Asamblea por Resolución XV-8. Глобальная система наблюдений за уровнем моря основана на международной сети станций по измерению уровня моря, координируемых МОК. Она предоставляет высококачественные стандартизированные данные, на основе которых подготавливаются ценные данные об уровне моря для международных и региональных научно-исследовательских программ, а также для применения на национальном уровне.

Глобальные измерения уровня моря необходимы для наблюдения за возможными резкими изменениями в результате глобального потепления. Прибрежные измерения уровня моря играют решающую роль для гидрографических обзоров и могут использоваться также для характеристики структуры циркуляции океана и изменчивости климата.

Элементами ГЛОСС являются:

(i) глобальная сеть постоянных станций наблюдения за уровнем моря для получения стандартизированных наблюдений за уровнем моря; она составляет первоочередную основу, к которой могут быть подключены региональные и национальные сети наблюдения за уровнем моря;

(ii) сбор данных для международного обмена с унифицированными форматами и процедурами, которые могут включать сбор данных в масштабе времени, приближающемся к реальному;

(iii) анализ данных и подготовка продукции, необходимой для использования в научных или практических целях;

(iv) оказание помощи и подготовка кадров для создания и обслуживания станций наблюдения за уровнем моря в качестве части ГЛОСС и совершенствование национальных сетей наблюдения за уровнем моря;

(v) отдельный набор отметок уровня мареографов ГЛОСС необходимо четко согласовать с глобальной геодезической справочной системой (например, обычной наземной справочной основой, определенной Международной службой наблюдения за вращением Земли (ИЕРС).

1. ЦЕЛЬ ГЛОСС

План заключается в том, чтобы к 1990 г. создать оперативную глобальную сеть постоянных станций наблюдения за уровнем моря, сообщающих среднемесячные данные в Постоянную службу среднего уровня моря (ПСМСЛ). Эта сеть будет обеспечивать структуру для других региональных и научных программ, таких, как изучение тропических зон океана и глобальной атмосферы (ТОГА) и эксперимент по изучению циркуляции Мирового океана (ВОСЕ). По мере разработки и осуществления программ будет повышаться уровень некоторых станций ГЛОСС с тем, чтобы обеспечить передачу данных в масштабах времени, близких к реальному, с целью использования национальными и региональными центрами для анализа и прогнозирования океанографических и атмосферных явлений.

Основными требованиями к станциям ГЛОСС являются:

(i) рекомендуется выборка показателей уровня моря, усредненных в течение нескольких минут (с целью избежания альтернативной метки) через интервалы в 15 минут, однако во всех случаях минимальный интервал выборки должен составлять один час;

(ii) регулирование времени мареографа должно совпадать с точностью уровня, что означает точность в одну минуту;

(iii) мареографы должны производить замер соотношения уровня моря с фиксированным и постоянным репером, который связан с целым рядом вспомогательных реперов, с тем чтобы предохранить его от перемещения или уничтожения. Соответствие между реперами и нулевым мареографом должно устанавливаться каждые шесть месяцев с точностью до нескольких миллиметров;

(iv) показания отдельных уровней моря должны сниматься с целевой точностью в 10 миллиметров;

(v) мареографы должны быть оборудованы для усреднения и быстрой съемки показателей; они должны быть оборудованы также для автоматической передачи данных в центры данных в дополнение к записи уровня на месте;

(vi) изменения уровня моря должны сопровождаться наблюдениями за атмосферным давлением, а также ветрами и другими экологическими параметрами, которые непосредственно относятся к анализу данных уровня моря.

После получения анализа данных становится более четкой связь уровня открытого моря с климатическими явлениями и появляется возможность их применения для прогнозирования. Все это наряду с развитием технологии должно привести к возможному повышению уровня всех станций, которые будут предоставлять данные в масштабе времени, близком к реальному.

2. ДЕЯТЕЛЬНОСТЬ

Ряд государств - членов МОК согласен принимать участие в ГЛОСС. Требуется: (i) чтобы все действующие станции ГЛОСС на ежемесячной основе сообщали показатели данных о среднем уровне моря Постоянной службе среднего уровня моря (ПСМСЛ) в течение одного года действия;

(ii) на ежечасной основе предоставлять показатели данных об уровне моря, имеющихся для международного обмена;

(iii) повысить уровень существующих станций, параметры которых ниже стандартов ГЛОСС;

(iv) в консультации с группой экспертов МОК по ГЛОСС создать новые станции;

(v) уделить самый высокий приоритет тем станциям в системе ГЛОСС, которые необходимы для международных программ, таким, как ТОГА и ВОСЕ;

(vi) обеспечить помощь другим государствам-членам на двусторонней или многосторонней основе и/или через программу МОК добровольного сотрудничества, чтобы позволить им принять участие в ГЛОСС. План выполнения ГЛОСС содержит указания относительно станций, которые будут составлять сеть ГЛОСС. Государствам-членам, ответственным за эти станции, была обращена просьба взять на себя обязательства, и в большинстве случаев они уже сделали это, а именно создать полностью укомплектованные станции ГЛОСС, обеспечить их деятельность и функционирование в соответствии с положениями Плана.

МОК через Группу экспертов по ГЛОСС и Секретариат обеспечивают регулярный обзор хода развития ГЛОСС, выполнения и координации с другими международными программами.

Этот План выполнения ГЛОСС был одобрен Межправительственной Океанографической Комиссией на пятнадцатой сессии ее Ассамблеи резолюцией XV-8.

1. Introduction

The Global Sea Level Observing System is based on an international network of sea level measuring stations co-ordinated by the IOC. It provides high quality standardized data from which valuable sea level products are produced for international and regional research programmes as well as for practical applications on a national level.

The System is known as GLOSS because it measures the Global Level of the Sea Surface, a smooth level after averaging out waves, tides and short-period meteorological events.

The Global Sea Level Observing System has to serve many purposes. It has to cover the entire spectrum in time and space from short-lived tsunami to the changes related to tectonic processes. Characteristics of the network must include permanence, high vertical precision and stability, and the flexibility to develop as the requirements evolve.

A Global network of some 300 sea level gauges has been proposed which is capable of providing valuable data for both practical and scientific applications. Subsequent scientific developments will allow a more appropriate gauge distribution. Therefore continued review is incorporated in the programme. Many of these gauges are already operating, but many need upgrading in terms of levelling, accuracy, documentation, telemetry and time taken before the data become available. About 100 new sites are proposed, many on ocean islands which are best placed for ocean monitoring. In a few cases, especially in polar regions, implementation will pose formidable problems for present technology, but even here there are sites where suitable measurements can be made.

The initial proposal for a Global Sea Level Network was prepared by Prof. K. Wyrtki (University of Hawaii, USA) and Dr. D. Pugh (Natural Environment Research Council, UK)² (list of References in Annex I) at the request of the Secretary of IOC and it was considered by the IOC Programme Group on Ocean Processes and Climate at its First Session (Paris, 6-8 March 1985) and by the Thirteenth Session of the IOC Assembly (Paris, 12-28 March 1985).

Upon the Recommendation of the First Session of the IOC Programme Group on Ocean Processes and Climate, the IOC Assembly at its Thirteenth Session by Resolution XIII-7¹ decided to adopt it as a basis for an extension of the existing sea level network, under the auspices of IOC, and urged Member States to participate in the Implementation of the Global Sea Level Observing System.

The first draft GLOSS Implementation Plan was prepared in 1986 with the assistance of the IOC Task Team of Experts on GLOSS. The draft GLOSS Implementation Plan (Doc. IOC/INF-663)²³ was approved in principle by the IOC Executive Council at its Nineteenth Session by Resolution ECXIX.6. This was circulated to IOC Member States with the request to confirm their participation in GLOSS and to provide information on their sea level stations to be included in the GLOSS network. On the basis of the information received from Member States, the revised GLOSS Implementation Plan was prepared as document IOC/INF-663 rev.³² and circulated in November 1986 for further updating. The development and application of GLOSS and its regional components was further considered at the Second Session of the IOC Programme Group on Ocean Processes and Climate (March 1987) and the Fourteenth Session of the IOC Assembly (March 1987), as well as the sessions of the IOC regional bodies (IOCARIBE, IOCEA, IOCINCWIO, IOCSOC, WESTPAC), WMO-IOC Intergovernmental TOGA Board (November 1987) and meetings of the SSG for WOCE.^{26, 11, 12, 13, 14, 25}

The Second Session of the IOC Task Team of Experts on GLOSS, which met in October 1987 (Honolulu, USA), reviewed and updated the GLOSS Implementation Plan.^{32, 33}

The present GLOSS Implementation Plan has been prepared based on the advice of the Task Team on GLOSS and the IOC Group of Experts on GLOSS and information provided by Member States up to June 1988. It supersedes all previous versions of the Draft GLOSS Implementation Plan issued by IOC in the form of information documents.

The following experts have assisted in preparation of the GLOSS Implementation Plan since 1985:

D.T. Pugh (UK), K. Wyrtki (USA), G. Homes (Australia), M.A. de Carvalho Oliveira (Brazil), C. Le Provost (France), S.R. Shetye (India), A. Snella (USA), P.A. Pirazzoli (IGCP-200), A. Bolduc (Canada), W.E. Carter (USA), Y. Dequan (People's Republic of China), C.S. Joshi (India), G.W. Lennon (Australia), G.A. Maul (USA), S. Ragoonaden (Mauritius), W. Scherer (USA), J.-M. Verstraete (France), A. Tolkachev (IOC), L.J. Rickards (UK).

2. Gloss Objective and Elements

2.1 The objective is to establish by 1990 an operational global network of permanent sea level stations reporting monthly mean averages to the Permanent Service for Mean Sea Level (PSMSL). This network will be the framework for the sea level components of regional and scientific programmes such as the Tropical Ocean and Global Atmosphere (TOGA) programme and the World Ocean Circulation Experiment (WOCE). As programmes are developed and implemented, certain GLOSS stations will be upgraded to near-real-time transmission of data to be used by national and regional centres for analysis and prediction of oceanographic and atmospheric phenomena.

As data products are made available and analyzed, the correlation of mean sea level to climatic phenomena will become clearer. This, along with advancement of technology, should result in the eventual upgrade of all stations to near-real-time delivery of data. 2.2 The elements of GLOSS are:

(i) the global network of permanent sea level stations for obtaining standardized sea level observations; this forms the primary framework to which regional and national sea level networks may be related;

(ii) data collection for international exchange with unified procedures which may include near-real-time data collection;

(iii) data analysis and product preparation required for scientific and/or practical applications;

(iv) assistance and training for establishing and maintaining sea level stations as part of GLOSS and improving national sea level networks;

(v) a selected set of GLOSS tide gauge bench marks shall be accurately connected to a global geodetic reference system (i.e. the conventional terrestrial reference frame, established by the International Earth Rotation Service (IERS)).

3. Application for Scientific and Practical Purposes

The data provided by the GLOSS network are needed as basic information to answer a wide range of scientific questions as well as for many practical applications.

In the absence of currents, density differences and atmospheric influences, the sea level would coincide with the geodetic surface known as the geoid (Figure 1). This geoid is not a simple geometric surface because of local and large scale anomalous mass distribution within the earth. After eliminating the waves and tides, the remaining mean sea level surface deviates from the geoid by amounts which seldom exceed 1 metre. The differences are related to ocean circulation, density fields, and to the influence of atmospheric pressure and winds.

The significance of the sea level topography for studies of the poleward heat transport and the role of the ocean in climate variability is apparent. Sea-surface topography and circulation are linked by geostrophy, which represents a balance between the Coriolis force and the pressure gradient perpendicular to the flow. At the sea-surface the pressure gradient is given by the slope of the sea level, and procedures have been developed to monitor the variations of geostrophic flow from sea level differences, particularly in the one-dimensional case of narrow passages or straits or for simple ocean currents. Interpretation of sea level variations in terms of regional ocean dynamics are also now becoming routine (for example, Sea level variations: monitoring the breath of the Pacific by K. Wyrtki).¹¹⁷ Traditionally, oceanographers determine the topography of the sea-surface from the observed distribution of density, but only in relation to a more or less arbitrarily selected reference surface, the so-called level of no motion. Techniques for synoptically determining the internal ocean density distribution in sufficient detail to resolve monthly or even interannual variations are unlikely ever to become cost effective. However, a combination of mean-density fields coupled with measured fluctuations of sea-surface topography and other remote-sensing techniques, such as acoustic tomography, may provide a workable monitoring system for ocean circulation. Examples of changes in the intensity of this circulation, for ocean gyres and for major boundary currents, with time scales of several years, have been well documented. The important annual cycle, which involves major variations of heat transport and heat content also belong in this spectral range. In addition to the circulation and heat-transfer monitoring potential, sea level is also indirectly related to the ocean heat storage through the expansion which results from changes of mean temperature. These may be local adjustments to changes in the thermocline levels or net warming of the global oceans over many years.

Sea level changes over the hundred-year time scale are related to crustal movements, to changes in the geoid, to changes in ice and water volumes, as well as to the mean warming and expansion of the ocean. To measure these changes, as well as the long-term variations of ocean circulation, a high degree of stability of the reference datum is an important requirement. The separation of the several contributions to long-term sea level changes will require information from other geo-scientific disciplines and technologies, for example the measurement of recent vertical crustal movements and their relationship to larger geological trends.

Since sea level records are continuous in time, and several series extending over many decades already exist, they are most suitable for general ocean monitoring. If measurement sites are properly selected, the measured levels can be more representative of the regional oceanography than other more variable parameters, such as coastal temperature and salinity. Also, the technology and local resources required for a long-term monitoring programme are very modest when compared with the cost of other monitoring systems, such as specialized research ships. Such measurements represent a minimum but extremely valuable oceanographic commitment from countries which do not yet have the resources available for major monitoring and research programmes.

Sea levels also have many practical applications for operational and engineering design activities. The analysis of tides, one of the more traditional aspects of sea level observations as a basis for navigation, will continue as an important practical consideration in addition to the intrinsic scientific interest. Meteorologically induced storm surges are also part of the sea level record, and a longterm monitoring programme will provide essential statistics for the calculation of return periods for extreme events, a necessary first stage in the design of local coastal defence systems. On an operational basis, sea levels are needed as input to flood-warning procedures. On an ocean-wide scale, tsunami traverse entire ocean basins, and a global observation system is necessary for their detection and the issue of timely warnings. Many new techniques for the estimation of flooding probabilities have been developed in recent years, but the basic requirement is for several years of good quality sea level data.

In addition to these identified and immediate practical advantages which are afforded by a global network of sea level stations, the longer-term benefits which result from new scientific insights, discoveries of ocean/atmosphere interaction and their consequences for forecasting climatic changes and changes in coastal environment must be

Figure 1. Mean sea level (MSL) at a particular site is related to the Tide Gauge Bench Mark. A variation in this distance (A1) may be due to vertical changes of land level or sea level. Measurement of the displacement of the TGBM from an absolute reference (A2) will allow sea level changes to be identified. When the geoid is accurately known, the differences in absolute sea levels (A3-B3) can be related to ocean currents.

Figure 2. Space-time relationship of sea-level variations (by D.T. Pugh).

Figure 3.

Centre: Distribution of the five zones of the ocean surface resulting from the last deglaciation, as distinguished by sea level variation curves of different types.

Above and below: Typical form of these curves over the past few thousand years, according to the mathematical model by Clark, Farrell and Peltier.⁸⁸

emphasized. In the foreseeable future, satellites with altimeters will provide a two-dimensional picture of seasurface topography, for which the sea level network will provide the ground truth and calibration. However, only ground-based gauges are capable of determining very slow and small changes of the mean sea level.

3.1 LONG-TERM CLIMATE STUDIES AND STUDY OF RECENT VERTICAL CRUSTAL MOVEMENTS

Sea level variations result from the integrated effect of a variety of physical processes spanning a broad range of spatial and temporal scales (Figure 2). The longer-term changes of global mean level are attributed to global scale processes, which are related to:

(i) changes in ocean volume through modifications to the water mass and balance over the surface of the Earth, arising from large-scale ice formation/melting and alterations in underground water storage; and

(ii) time-varying deformation of the Earth's crust via changes in glacial loading, plate tectonics, volcanism and sedimentation.

The Second World Climate Conference held in Geneva, 29 October-7 November 1990, made the following conclusion: "Emissions resulting from human activities are substantially increasing atmospheric concentration of the greenhouse gases. These increases will enhance the natural greenhouse effect, resulting on average in an additional warming of the Earth's surface. The Conference agreed that this and other scientific conclusions set out by the UNEP-WMO Intergovernmental Panel on Climate Change reflect the international consensus of scientific understanding of climate change. Without actions to reduce emissions, global warming is predicted to reach 2° to 5° C over the next century, a rate of change unprecedented in the past 10,000 years. The warming is expected to be accompanied by a sea level rise of 65 cm±35 cm by the end of the next century. There remain uncertainties in predictions, particularly in regard to the timing, magnitude and regional patterns of climate change." The Conference emphasized the need to create a Global Climate Observing System, to be based on the WWW and a global ocean observing system (GOOS) to meet the needs for climate system monitoring, climate change detection and response monitoring and other objectives.

Within the International Geological Correlation Programme (IGCP), co-sponsored by IUGS and Unesco, a special project was established to identify and quantify processes of sea level change to provide a basis for predicting near future changes for application to a variety of coastal problems, with particular reference to densely populated low-lying coastal areas. This project is known as Late Quaternary Sea Level Changes: Measurement, Correlation and Future Applications (IGCP-200).⁸⁸

The IGCP-200 promoted the exchange of information on research and scientific publications related to the study of sea level changes. A "Directory of Sea Level Research was issued in 1984 and a Supplement was issued in 1986.

A study undertaken by a working party of IAPSO on Changes in relative mean sea level (under the direction of the IAPSO Advisory Committee on Tides and Mean Sea Level,⁶⁸ noted that in any interpretation of secular changes in RSL (mean sea level relative to land), although the prime interest is in very low frequency phenomena, it is necessary to study the local responses of sea level at much higher frequencies.

The Group pointed out that specific tide-gauge locations for monitoring secular changes in global sea level must be decided by national authorities with the ability to maintain them, but emphasized the following:

i) Allowance should be made for tectonic changes through both direct spacegeodetic measurements (e.g. VLBI, GPS, DORIS) and geodynamic modelling.

(ii) The oceanographic influences on the RSL at each station should be examined through theoretical and empirical modelling. There are clearly some advantages to co-locating these tide-gauge positions with those required for the WOCE-TOGA programmes.

(iii) The importance of historical sea level data should be respected. Other things being equal, VLBI measurements should be made at tide-gauge locations which can provide the longest historical records. Lower priority may perhaps be given to stations in areas of substantial glacial rebound.

(iv) It seems particularly desirable to establish new (or upgraded) sea-level stations at all proposed VLBI/GPS nodes, and similarly to establish some new VLBI/GPS nodes at sites of long existing tidal stations.

This work is being continued. Also under the auspices of IAPSO, a new ad hoc Committee is investigating the geophysical, including oceanographic, benefits of fixing tide gauge benchmarks in an absolute global reference system, the technical feasibility and possible strategy for such developments.

The General Assembly of the International Union of Geodesy and Geophysics (IUGG) at its XIXth Session (1987) noting that variations of sea level are of great importance when monitoring ocean circulation and flow through straits as well as climatic change over a timescale of tens of years, and that such monitored variations are useful when calibrating satellite altimetry, recommended that all national authorities make maximum effort to install new tide gauges and to maintain, renew and recalibrate existing ones to modern scientific precision. This should be done at as many oceanic sites as possible, especially at those spanning straits and major jet flows, and it also recommended that such sites should regularly measure atmospheric pressure and precise absolute geodetic position, with telemetry of all the data to collecting centres, such as Permanent Service for Mean Sea Level (PSMSL).

3.2 REQUIREMENTS OF THE WCRP: TOGA AND WOCE

3.2.1 World Climate Research Programme (WCRP)

The World Climate Research Programme (WCRP) is a joint undertaking of the International Council of Scientific Unions (ICSU) and the World Meteorological Organization (WMO). The scientific guidance for the conduct

of the WCRP is provided by a Joint ICSU-WMO Scientific Committee (JSC). Oceanographic components of the WCRP, are developed by the Joint SCOR-IOC Committee on Climate Changes and the Ocean (CCCO). Intergovernmental co-ordination of oceanographic aspects of the WCRP implementation, through TOGA and WOCE in particular, is organized by WMO and IOC.

The Scientific Plan for the World Climate Research Programme³ emphasizes that an especially large observational effort is required for the oceans because the descriptions of large scale dynamic events in the oceanic circulations are not yet based on synoptic observations with appropriate time and space resolution.

In the First Implementation Plan for the World Climate Research Programme (1985)⁴ particular emphasis is given to a Sea Level Observing System. The following WCRP requirements for sea level data are outlined in the Implementation Plan:

(i) establishment of about 100 additional conventional tide-gauges as proposed in the IOC Plan for the Global Sea Level Observing System.

The TOGA programme priorities are for stations located in the near-equatorial region. The WOCE priorities are for a relatively thin global network of about 60 stations distributed over the world ocean, with emphasis on major straits and passages, and also areas where the tidal harmonics are not yet precisely determined.

(ii) Arrangements for high-precision levelling of tidegauge benchmarks to a universal reference geodetic surface or datum, for validation of satellite altimetric data. The levelling should be repeated at least twice during the WOCE field observation period, at selected sea level stations.

(iii) Exchange of sea level data in accordance with internationally agreed procedures (IGOSS) and/or the provision of automatic transmission equipment for relay via satellite data collection systems.

(iv) Support to the operation of the TOGA Sea Level Data Centre for the duration of the TOGA Project (1985-1995).

3.2.2 Tropical Oceans and Global Atmosphere (TOGA) Programme

The Tropical Oceans and Global Atmosphere (TOGA) Programme is one of the key projects within the framework of the World Climate Research Programme. The TOGA programme began in January 1985 and extends over a ten-year period.

The scientific strategy of the TOGA programme has been planned by the TOGA Scientific Steering Group (SSG). This is established as a joint body of the JSC for WCRP and the SCOR-IOC CCCO. The Scientific Plan for the TOGA Programme⁵ defines the following objectives:

(i) to gain a description of the tropical oceans and the global atmosphere as a time dependent system, in order to determine the extent to which this system is predictable on time scales of months to years, and to understand the mechanisms and processes underlying its predictability;(ii) to study the feasibility of modelling the coupled

ocean-atmosphere system for the purpose of predicting its variations on time scales of months to years;

(iii) to provide the scientific background for designing an observing and data transmission system for operational prediction if this capability is demonstrated by coupled ocean-atmosphere models.

The observational components of the TOGA programme to achieve these objectives include maintenance and expansion of the existing island-based and coastal tide gauge network in tropical zones of the World Ocean within the framework of the Global Sea Level Observing System (GLOSS) of the IOC and the establishment of a Tropical Sea Level Centre to produce maps of monthly mean sea level anomalies. Details regarding the sea level component of the TOGA programme are included in the TOGA Implementation Plan.⁶ In fact, the designation of stations for GLOSS was undertaken with the TOGA requirements in mind and in co-operation with the three CCCO Tropical Ocean Climate Studies Panels. Sea level measurements at various islands and coastal stations are required during the TOGA programme to describe the low frequency fluctuations of the tropical oceans. Sea level integrates effects which occur at different levels in the water column, and since it can be measured hourly, there is no aliasing of high into low frequency fluctuations. The response to low frequency atmospheric forcing is often clearly shown in the sea level data near the Equator, and it has been used extensively in ocean model verification studies. Sea level is a measure of heat content, and can be used as an indicator of thermocline depth. In addition, when sea level anomalies are interpreted as deviations from the mean dynamic height field, sea level differences between pairs of gauges poleward of 2° North or South can be used to estimate the geostrophic component of the surface flow. The horizontal resolution attainable is dictated by the available sites; time resolution is one day; and the required accuracy is 2 cm.

All sea level stations between 30° N and 30° S identified as a part of GLOSS will also serve as TOGA sea level stations. The first priority for installing the sea level stations for TOGA purposes is for those located in the near-equatorial region, and the second priority is for those in the tropical belt. Satellite telemetry will be introduced in scientifically strategic areas during the tenyear TOGA observational period.

The TOGA Scientific and Implementation Plans^{5, 6} include maps showing locations of sea level stations required for TOGA, and these are closely related to GLOSS.

3.2.3 The World Ocean Circulation Experiment (WOCE)

The World Ocean Circulation Experiment (WOCE) is a major component of the World Climate Research Programme. It is considered as the principal activity within Stream 3 of the WCRP. To plan and organize the experiment the Joint JSC/CCCO Scientific Steering Group for WOCE has been established. The Scientific Steering Group (SSG)) for WOCE with the assistance of the International WOCE Planning Office Wormley, UK) has prepared the Scientific Plan of the World Ocean Circulation Experiment⁹ and WOCE Implementation Plan.³⁵

WOCE has two major goals: Goal 1. To develop models useful for predicting climate changes and to collect the data necessary to test them. Goal 2. To determine the representativeness of the specific WOCE data sets for the long-term behavior of the ocean, and to find methods for determining long-term changes in the ocean circulation.

3.2.3.1 WOCE Applications

The first basic goal of WOCE requires sea level measurements for two major purposes: (i) calibration of altimetric satellite missions and (ii) geostrophic computations of specific currents, for example, through straits. Sea level will also serve as a check on the validity of numerical model outputs.

The second basic goal of WOCE, determining the representativeness of the specific WOCE data set for the long term behaviour of the ocean, will be addressed by comparing sea level measurements made during WOCE with those held by PSMSL, many of which date from the 19th century. These earlier records of sea level can also serve as a check on the output when the models developed during WOCE are run for previous decades. In addition, because possible enhanced rates of sea level rise are difficult to isolate against the background of interannual oceanographic variability at each site, the understanding of ocean dynamics developed through WOCE will allow these relatively short-term changes of sea level to be identified and removed before calculating long-term trends;

In general, hourly, or more frequent observations are required. For locations at mid and high-latitudes, tide gauge measurements must be supplemented with sea level atmospheric pressure data. It is highly desirable that multiple tide gauge sensors are used to check the outputs and to cover for instrument failures;

3.2.3.2 Detailed Requirements

Altimetric calibration

Sea level measurements are needed to reduce time variable, random errors in altimetric satellite orbits and for absolute (time average) altimetric calibration (and for relating one satellite's data to that of a non-contemporaneous satellite).

Reduction of random orbital errors

WOCE needs data from a selected subset of GLOSS with a 2-month delay for immediate analysis; In addition all hourly sea level data simultaneous with the satellite missions are ultimately potentially useful; For this reason a more extensive subset, collected and checked with 12 to 18 months after the measurements is planned.

Absolute calibration

Tide gauges can be used for substantially reducing the errors in altimeter measurements of sea level in geocentric co-ordinates (absolute measurement of sea level). For example, ten tide gauges sited along the subsatellite track traced out by Topex/Poseidon ephemeris error to a few centimetres, provided the geocentric position of the stations are known in geocentric co-ordinates with comparable accuracy. The co-ordinates can be obtained by differential GPS measurements relative to the nearest VLBI station in conjunction with satellite laser ranging, or by other techniques such as DORIS, PRARE.

Monitoring geostrophic gradients, straits and pairs

Long-term records of sea level differences across currents, either between islands, or across straits, allow monitoring of flow variations. Daily mean sea levels would be adequate for monitoring purposes, but it is recommended that hourly values are obtained during WOCE because these would allow:

(i) non-linear local oceanographic distortions to be seen as higher tidal harmonics;

(ii) continual checks on the gauge performance and identification of potential errors such as datum shifts.

Particular attention should be given to the high latitude Southern Ocean stations which pose special problems because of the ice conditions and the infrequent visits to many of the proposed sites. Support should be given to technology developments necessary to make these measurements possible. Some pairs of stations would be desirable for the study of the zonal wave number of the Antarctic Circumpolar Current variability.

3.2.3.3. Implementation

These requirements identify two related types of sea level data collection and analysis:

(i) data collected and generally available for altimetry within two months, with an accuracy of 3-5 cm. Gauges in this network will probably transmit data by satellite in near-real-time to their national authorities. Hourly values are acceptable, but 6-minute samples are preferred;

(ii) a widely based global network comprising as many of the GLOSS stations as can be activated and maintained, with particular emphasis on those stations mentioned above. Hourly data to be available within 18 months of collection, accurate to 1-2 cm with full datum control and careful checking for inconsistencies and potential errors.

The Scientific Steering Group for $WOCE^{36}$ agreed that a set of some 65-70 gauges constitute the WOCE array that are needed for:

(i) support for altimetry with high frequency (> 1 cycle/hr), high precision;

(ii) time series for estimate of transport variation through straits.

Two WOCE Sea Level Data Assembly Centres (DACs) were established at the University of Hawaii (USA) and at the Proudman Oceanographic Laboratory, Bidston (UK).

The SSG/WOCE confirmed that for WOCE, sea level data are needed on six-minute intervals together with adequate air pressure corrections. For some gauges this may involve additional liaison with national authorities and arrangements where possible for bench marks to be established and regujlarly checked, VLBI or other geocentric levelling and similar details. The WOCE Sea Level Network and its list of stations are shown in Annex X.

3.3 NATIONAL AND REGIONAL BENEFITS

Sea levels also have many practical applications for operational and engineering design activities^{53, 55, 56, 63, 77, 85, 89} and are important for the following national

applications:

(i) for ship movement operation in harbour and seaports;

(ii) for flood forecasting and control;

(iii) for storm surge warning;

(iv) for defining datums for hydrographic charting and topographic mapping;

(v) for coastal zone management, and control of coastal zone erosion, and sedimentation;

(vi) for engineering applications related to sea-ports design and operation maintenance;

(vii) for tsunami warning;

(viii) for prediction of tides, and preparation of tidetables;

(ix) for determination of coastal and territorial sea boundaries, in connection with the ownership of land and marine mineral resources exploitation;

(x) for determination of coastal sea circulation;

(xi) for development and verification of ocean models, required to determine currents and pollutants transport; (xii) for earthquake prediction;

(xiii) for investigation of potential salt water intrusion; (xiv) for defining geodetic height datums;

(xv) for designing of reclamation scheme, and construction of dumps;

(xvi) for prediction of upwelling (in tropical zone) and fishing operations.

The importance of sea level measurements for regional scientific and practical applications has been emphasized within the various regional oceanographic programmes co-ordinated by IOC.

Within the Central Indian Ocean region (IOCINDIO) the need for sea level measurements was mentioned for regional co-operative research projects, dealing with the study of coastal water dynamics, water mass movements and storm-surge prediction for the marginal seas of the Northern Indian Ocean.

The proposed network of sea level stations in the Indian Ocean, as a part of GLOSS, is appropriate for the monitoring of specific processes, such as the annual development of a western boundary current, the equatorial dynamics, the exchange of water between the Indian and Pacific oceans through the Indonesian Archipelago, and the strength of parts of the Antarctic circulation (Annex IV).

It was also proposed to install, upgrade and maintain tide-gauges in the Southern Ocean to improve our understanding of the tidal regime in this ocean. Sea level measurements could also be of use in assessing the variability of circulation in the Antarctic Circumpolar Current where the barotropic component is thought to be large¹³ (Annex IV).

In the Caribbean Sea and adjacent regions a system of co-located sea level/weather stations is considered crucial for the understanding of surface currents. This falls within the proposed regional study of the circulation of the entire Caribbean Sea and adjacent regions, which is required for understanding the effect of the circulation on pollution transport, on coastal dynamics, and on mesoscale features that contribute to the ocean's influence on weather and climate. ¹¹

In the North Sea, a Storm-Surge Warning System has been developed to warn of impending coastal flooding.

The IOC Tsunami warning system in the Pacific combines selected sea level gauges from several countries into an ocean-wide network for the dedicated purpose of detecting tsunami^{10, 34} (Annex IV).

In the Pacific Ocean many sea level stations since 1984 provide data to a specialized Oceanographic Data Centre in Honolulu within the framework of the IGOSS Sea Level Pilot Project (ISLPP). The data are used for the preparation and wide distribution of monthly mean sea level anomaly charts^{7.8} (Annex IV).

The need for establishment of regional networks of sea level stations required for research and for practical applications was also indicated for the Red Sea and the Gulf of Aden, the North and Central Western Indian Ocean¹⁴ (Annex IV) and in the Mediterranean as part of the programme on the Physical Oceanography of the Eastern Mediterranean (POEM).²².

The Proposed Network for the Global Sea Level Observing System, to meet the identified practical and scientific requirements, is shown in Figure 4.

4.1 GLOSS NETWORK

Physically, the network is constrained to land-based stations along continental coasts and at oceanic islands; this necessary but imperfect distribution defines a minimum length scale to the resolution. Scientific analyses of existing and projected data will allow some clarification of the appropriateness of these locations for a monitoring systems. Present knowledge of ocean behaviour indicates that there are several length and time scales over which sea level changes are significant. In general, the longperiod changes have the largest spatial scales. For example, the increase of sea level due to changes in ocean volume is a global phenomenon; similarly, the annual cycle of sea level has an hemispheric scale. Phenomena such as El Niño have an event duration of 1-2 years and a basin-wide scale. Interannual variations of sea level over periods from three months to a few years have typical length scales of 1,000 km or greater. At shorter time scales, storm-surge events have periods from days to hours and correspondingly shorter length scales, of order 100 km. Conversely, some processes of vertical crustal movement may have very long time scales, but they may have a spatial coherence which extends over a few tens of kilometres or less.

By concept and design a global network of sea level stations must be primarily concerned with the resolution of large-scale, long-term phenomena. This coarse resolution must be refined in certain areas such as straits or in the vicinity of western boundary currents, which are critical for the behaviour of the oceans as a whole. Individual gauges on the network will also be needed for local studies.

In making this proposal, the following criteria were adopted, with the clear understanding that there would be logistic constraints and that subsequent scientific development would permit a more appropriate monitoring network as the project proceeds:

(i) a gauge has been allocated to each ocean island or group of ocean islands, at intervals not closer than 500 km;

(ii) gauges are located along continental coasts at intervals general not less than 1,000 km; preference is given to nearshore islands to maximize the exposure to the open ocean;

(iii) in special cases, such as a strait that connects large parts of the oceans, the network density has been in-

creased, so that a minimum of one gauge on either side of the strait is proposed;

(iv) priority is given to well established gauges, and gauges which have a long history of previous operation since these can give valuable information on trends.

4.2 MEASUREMENT TECHNIQUES AND REQUIREMENTS

The measuring system at each station will consist of a transducer which senses some physical parameter clearly related to the sea-surface level, and a system for local recording of the data. Automatic transmission or the data in near-real-time to national and international centres should be a feature of the final network. It is important that the operation of the individual measuring systems include procedures for regularly checking the quality and datum stability of the readings.

There are two basic parameters which may be monitored, the surface level itself or the pressure at some fixed point on the sea bed. There are scientific and instrumental advantages of each method. Traditionally, the sea-surface has been measured by means of a float arrangement mounted above a well which damps out short-period wave motions (Figure 5). This procedure is simple, well proven and has no inherent drift. However, there are problems of non-linear responses of stilling wells to waves and currents (Bernoulli effect), which can produce errors in the measurement of the water level. Alternative methods for sensing the sea-surface include acoustic and electromagnetic time-of-flight gauges: these avoid the problems associated with moving floats and wires, but will still be subject to errors if mounted over stilling wells. Despite these reservations, the stilling well arrangement, if properly designed, remains a robust and reliable system for many applications.

An alternative is to measure nearshore sea-bed pressure and to convert this to sea level by means of the hydrostatic relationship between pressure, water density and gravitational acceleration (Figure 6). Sea-bed pressure includes the atmospheric pressure, which must be corrected for, either by separate measurement or by means of differential transducer vented to the atmosphere, as in some bubbler gauges. Unlike surface sensing gauges, which require a vertical structure such as a jetty for mounting, pressure systems may be with the recorder on the sea-bed, or connected by a pressure or electric cable to a recorder ashore. With pressure systems, care is necessary to ensure that the datum level remains constant, and sea-water density variations must be monitored at suitable intervals for the best accuracy.

1 Suez 2 Djibouti 3 Aden 4 Salalah 5 Muscat 6 Hafun 7 Mogadishu 8 Mombasa 9 Mtwara 10 Inhambane 11 Pemba 12 San Salvador 13 Durban 14 Aldabra 15 Nosy-Be 16 Agalega Is. 17 Pointe des Galets 18 P. Louis **19 Rodrigues** 20 Marion Is. 21 Crozet Is. 22 Mawson 23 Kerguelen Is. 24 St. Paul 25 Mirny 26 Diego Garcia 27 Gan 28 Male 29 Minicoy 30 Karachi 31 Veraval 32 Cochin 33 Colombo 34 Madras 35 Vishakhapatnam 36 Chittagong 37 Akyab 38 Port Blair 39 Ko Lak 40 Broome 41 Nicobar 42 Ko Taphao Noi 43 Pengkalam 44 Singapore 45 Padang 46 Cocos Is. 47 Christmas Is. 48 Pelabuhan Ratu 49 Benoa 50 Kupang 51 P. Hedland 52 Carnarvon 53 Fremantle 54 Esperance 55 P. Adelaide 56 Hobart 57 Sydney 58 Brisbane

59 Bundaberg 60 Townsville 61 Booby Is. 62 Darwin 63 Alotau 64 Vanimo 65 Rabaul 66 Honiara 67 Sorong 68 Ambon 69 Manado 70 Jolo 71 Davao 72 Legaspi 73 Manila 74 Nome 75 Oui Nhon 76 Port Elizabeth 77 Quarry Bay 78 Zhapo 79 Dalian 80 Port Said 81 Naha 82 Aburatsu 83 Nagasaki 84 Pusan 85 Kushimoto 86 Mera 87 Ofunato 88 Hakodate 89 Kushiro 90 Yuzno-Kurilsk 91 Leningradskay 92 Nagaevo 93 Petrapavlovsk 94 Kanmen 95 Syowa 96 Dzaoudzi 97 Kaliningrad 98 Tuapse 99 Russkaya Gavan 100 Sand Point 101 Wellington 102 Unalaska 103 Chichijima 104 Minamitorishima 105 Wake Is. 106 Midway Is. 107 French Frigate 108 Honolulu 109 Johnston Is. 110 Eniwetok 111 Kwajalein Is. 112 Majuro 113 Tarawa 114 Nauru Is. 115 Ponape 116 Truk

117 Kapingamarangi 118 Saipan 119 Yap Is. 120 Malakal 121 Funafuti 122 Suva 123 Noumea 124 Norfolk Is. 125 Tongatapu 126 Kermadec 127 Waitemata 128 Chatham Is. 129 Bluff 130 Macquarie Is. 131 Dumont d'Urville 132 Ballenv 133 Scott Is. 134 Mc Murdo 135 Russkaya 136 Peter Is. 137 Pascua Is. 138 Rikitea 139 Rarotonga 140 Papeete 141 Moulmein 142 Nuku Hiva 143 Penrhyn 144 Pago Pago 145 Kanton Is. 146 Christmas 147 Fanning 148 Lord Howe Is. 149 Guam Is. 150 Seward 151 Prudhæ Bay 152 Sachs 153 Resolute 154 Sitka 155 Rupert 156 Tofino 157 S. Beach 158 San Francisco 159 Scripps Pier 160 Guadalupe Is. 161 San Lucas 162 Socorro 163 Manzaillo 164 Puerto Angel 165 Clipperton 166 Coco Is. 167 Quepos 168 Balboa 169 Baltra 170 Buenaventura 171 Tumaco 172 La Libertad 173 Callao 174 Antofagasta

175 Valparaiso 176 Juan Fernandez 177 San Felix 178 Puerto Montt **179 Punta Arenas** 180 Puerto Williams 181 Ushuaia 182 Acajutla 183 Palmer 184 Jubany 185 Esperanza 186 Bahia Scotia 187 S. Georgia 188 Faraday 189 Base Antarctica 190 Puerto Deseado 191 Puerto Madryn 192 Mar del Plata 193 Rio Grande 194 Cananeia 195 Rio de Janeiro 196 Itaparica 197 Porto de Natal 198 Fernando de Noronha 199 St Peter/St Paul 200 Porto de Itaqui 201 Porto de Santana 202 Cayenne 203 Port-of-Spain 204 Le Robert 205 Marseille 206 San Juan 207 Cartagena 208 Coco Solo 209 Les Cayes 210 Port Royal 211 Bimini 212 Veracruz 213 Progreso 214 Cabo San Antonio 215 Siboney 216 Key West 217 Galveston 218 Miami 219 Cape Hatteras

220 Ventnor 221 Bermuda 222 Halifax 223 St Johns 224 Nain 225 Gothaab 226 Alert 227 Nord 228 Angmagssalik 229 Reykjavik 230 Jan Mayen 231 Spitsbergen 232 Bear Is. 233 Goteborg 234 Rorvik 235 Maloy 236 Lerwick 237 Torshavn 238 Stornoway 239 Malin Head 240 Castletownsend 241 Newlyn 242 Brest 243 La Coruna 244 Flores 245 Ponta Delgada 246 Cascais 247 Xiamen 248 Gibraltar 249 Ceuta 250 Funchal 251 Las Palmas 252 Nouadhibou 253 Dakar 254 P. Grande 255 Conakry 256 Aberdeen Point 257 Abidjan 258 Tema 259 Lagos 260 Sao Tome 261 Pointe Noire 262 Luanda Lobito 263 Ascension 264 St. Helena

265 Ilha da Trindade 266 Tristan da Cunha 267 Acapulco 268 Simonstown 269 Bouvet 270 Novolazarevskaya 271 Fort Dauphin 272 Daru 273 Port Victoria 274 Murmansk 275 Honningsvag 276 Gibara 277 Davis 278 Casey 279 Willis 280 Douala 281 Marmagao 282 Tan Tan 283 Lusi 284 Cuxhaven 285 Nawiliwili 286 Kahului 287 Hilo 288 Pensacola 289 Ft. Pulaski 290 Newport 291 Cilacap 292 Surabaya 293 Cendering/Kula 294 Molodezhnaya 295 Gwadar 296 North Caicos 297 Zanzibar 298 Aves Is. 299 La Orchila 300 Montevideo 301 Palmyra 302 Adak 303 Massacre Bay 304 Socotra Is. 305 Falkland Is/ Malvinas Is. 306 South Orkney Is. 307 Won San

Figure 5. Basic Tide Gauge (from Manual on Sea-Level Measurement and Interpretation.¹⁶

Figure 6. Basic Pneumatic Bubbling System (from Manual on Sea-Level Measurement and Interpretation.¹⁶

Automatic monitoring systems also afford the possibility of recording and transmitting data on atmospheric pressure, winds and other environmental parameters, which are of direct relevance to the sea level data analysis. Atmospheric pressure data are particularly important, especially at higher latitudes.

The measured sea levels are usually recorded either continuously on a chart, or in digital form at discrete intervals on punched or magnetic tape. Charts are useful for immediate local operations, but as part of a network, each gauge should have data recorded automatically in computerformat. Sampling of sea level averaged over a few minutes (to avoid aliasing), at intervals of 15 minutes, is recommended, but in all circumstances the minimum sampling interval should be one hour. Gauge timing should be compatible with level accuracy, which means an accuracy of plus or minus 1 minute.

All gauges must measure sea levels relative to a fixed and permanent local tide gauge Bench Mark, which is connected to a number of Auxiliary Bench Marks. These guard against the movement or destruction of the main tide gauge bench mark (Figure 7). Connections between the Bench Mark and the gauge zero should be made to an accuracy of a few millimetres every six months. The readings of individual sea levels should be made with a target accuracy of 10 mm. Although initially the network must accept present-day instrument performance, as the technology develops and the resources become available, gauges should be equipped for averaging and rapid sampling; they should also be equipped for automatic data transmission to data centres in addition to the local recording.

Figure 7. Float Gauge Datum Check (from Manual on Sea-Level Measurement and Interpretation.¹⁷

Another fundamental development is the ability to connect all network Gauge Bench Marks into a Global Vertical Datum System, which will eventually allow the vertical crustal movements to be distinguished from sea level trends. Similarly, it may eventually be possible to relate all the Bench Marks to a reference geoid, which would enable oceanographers to compute absolute pressure gradients between stations, and to relate these to permanent currents.^{38, 40, 41}

The data recorded at the station will contain errors of many kinds. They will require checking by the local or national authority for calibration and timing adjustment, for datum control, and for the removal of obvious instrumental malfunctions. This should be done with the minimum possible delay. This applies for all stations, as this allows problems with the system to be identified and corrected without further loss of data. The daily and monthly mean values should be computed for scientific use according to established methods.

In order to unify procedures for sea level measurements and analysis and to assist those Member States who wish to install or reactivate their sea level stations, a Manual on Sea Level Measurement and Interpretation has been prepared and issued by the IOC in 1985.¹⁶

The monthly mean values are to be submitted to the Permanent Service for Mean Sea Level and the hourly and daily mean values should be made available for scientific analysis as required.

As automatic transmission from the gauges becomes standard there will be discrepancies between the raw values received by operational centres and the final corrected values issued by the international centres. It is necessary to make a clear distinction between the data transmitted in real-time which will be of inferior quality, but quite adequate for operational purposes, and the final data presented through PSMSL, which requires careful editing and well documented datum control. The IOC can help in the co-ordination of data flow using its existing mechanisms (i.e. IGOSS and IODE).

Annex V contains a list of suppliers of tide gauge equipment.

Technologies for sea level measurements continue to evolve. For example, USA (NOAA) has recently begun to operate new gauges of acoustic type.⁴⁰

It is called Next Generation Water Level Measurement System (NGWLMS), which is designed to meet requirements for long-term monitoring of absolute sealevel. A single measurement from the NGWLMS represents about an order of magnitude improvement over the existing measurement type, i.e. the single measurement will be good to the +/-1 cm level with most of the systematic error effects either removed or greatly reduced³⁸ (Figure 8).

Data from several sensors will be stored at a data collection platform and communicated to data analysis centre through the Geostationary Operational Environmental Satellite (GOES) with telephone as a back-up. It will also allow line-of-sight radio communication for local applications. Figure 8 illustrates the NGWLMS communication options.

Figure 8. Several different communications options from the new water level system are shown (by D.C. Beaumariage and W.D. Scherer).³⁸

Figure 9. Absolute measurements of global sea level could be obtained by linking NGWLS with GPS and VLBI systems (by D.C. Beaumariage and W.D. Scherer).³⁸

4.3 ABSOLUTE SEA LEVEL NETWORK

The presently employed technology for sea level measurements is inadequate for applications to determine long-term trends in absolute sea level needed to understand long-term climate changes as well as tectonic movements.

Tide gauges measure only the relative motion between the sea-surface and the land, and since land can rise and subside, the problems of relative motion must be solved by more sophisticated technology if sea level data are to be properly interpreted and used. The development of new geodetic techniques based on Very Long Baseline Interferometry (VLBI), the Global Positioning System (GPS) and absolute gravity measurements has created the opportunity to link a network of tide gauges to a highly accurate global reference system. By distinguishing sea level changes from land rise or subsidence, this global reference system will ultimately provide the first measure of absolute as opposed to relative sea level change³⁸ (Figure 9).

Sea level station positions and measured sea-surface positions will be determined in the global VLBI/GPS reference system suitably connected to geocentric coordinates, with an accuracy of about 1 cm, and time series of the absolute motions of the tidal bench marks (land reference points) will be determined, after a sufficient length of time, to better than 1 mm per year.

Within the GLOSS network about 100 absolute sea level stations would be required preferably on open coasts, which are more representative of open-ocean conditions. All tide gauges that are to be used to monitor global sea level must be connected to a local levelling network which is properly constructed and regularly resurveyed (annually if possible). The levelling network should have a minimum of 6 to 10 bench marks and extend over a sufficient area to minimize the chances of destruction by local engineering projects or natural causes. At least one of the marks should be located at a site suitable for GPS observations (i.e. the horizon should be free of obstructions above 10 to 15 degrees elevation). When possible tide gauges should be organized into regional networks, and GPS surveys should be conducted to determine their relative positions with an accuracy of 1 cm or better. These regional networks should be connected to the global VLBI reference frame.

4.4 GLOSS SEA LEVEL STATIONS

The list of GLOSS sea level stations based on the abovementioned criteria and information provided by participating Member States is shown on the following pages (Table 1).

4.5 OTHER PROGRAMMES WITH SEA LEVEL COMPONENTS

As it was emphasized earlier the GLOSS will serve many scientific and practical purposes. It will be required for global-scale programmes, such as TOGA and WOCE, as well as in support of research programmes to be developed within the regional activities of IOC. These regional activities combine on a rational basis practical items of national interest and joint efforts of the countries of the region in implementing their research and service oriented programmes, in order to use most efficiently and rationally marine resources and improve coastal zone management. It is therefore, considered important that the development of regional networks and Global Network be complementary and that the existing IOC regional subsidiary bodies considers the development of regional projects, by designing and developing regional sea level projects. The IOC Assembly at its Fourteenth Session (1987) pointed out that IOC regional bodies are a proper framework to assist in implementation of GLOSS in their respective regions (see Annex V).

Atlantic Ocean

- The IOC Sub-commission for the Caribbean and Adjacent Regions (IOCARIBE)

- The IOC Regional Committee for the Central Eastern Atlantic (IOCEA)

Indian Ocean

- IOC Regional Committee for the North and Central Western Indian Ocean (IOCINCWIO)

- IOC Regional Committee for the Central Indian Ocean (IOCINDIO)

Pacific Ocean

- IOC Sub-Commission for the Western Pacific (WESTPAC)

- Joint IOC-WMO-CPPS Working Group on the Investigations of El Niño

Southern Ocean

IOC Regional Committee for the Southern Oceans (IOCSOC)

Table 1. List of GLOSS Sea-Level Stations

 	STATION	COUNTRY/ TERRITORY	CO-ORDINATES	 TYPE OF TIDE-GAUGE 	 0 	PERIOD OF OBSERVATION FROM - TO	EXISTING STATION ***	 ** 	 c * 	PARTICIPATION IN OTHER INTERNATIONAL ACTIVITIES (PSMSL,TOGA, ISLPP, ITSU)
262	Lobito	Angola	12-205 13-34E			, 	0			 TOGA
 186	Bahia Scotia	Argentina	 60-445 044-39₩	1	 S		0	 0	 c	1
	Puerto Deseado	Argentina	47-455 065-55W	Float	Å	1970-1984	0	0	C	1
	Esperanza	Argentina	63-185 56-55W	Float	s	1959-1978	0		C	1
184	Jubany	Argentina	62-145 058-40W	1	İs		0	a	l c	1
192	Mar del Plata	Argentina	38-035 057-33W	Float	İ A	1954	+	0	1 0	l
191	Puerto Madryn	Argentina	42-465 065-02W	Float		1945	+	0	C	[
181	Ushuaia	Argentina	54-49S 068-13W	Float	A	1953	+	٩	с	
 61	Booby is.	Australia	 10-365 141-55E	 Float		1971	+	Q	l c	
57	Botany Bay (Sydney)	Australia	33-595 151-13E	Float	P	1981	+	٩	c	ISLPP
58	Brísbane (West Inner Bar)	Australia	27-225 153-10E	Bubbler	P	1982	+	٩	С	
401	Broome	Australia	18-005 122-13E	 Float		1982	+	•	C	l
	Bundaberg	Australia	24-465 152-23E	Float	 P	1979	+	•		ISLPP
	Carnarvon	Australia	24-483 132-23C	Float		1977	+	9	C	19677
	Casey	Australia	66-17S 110-32E		l s		0	9	c	
	Christmas ls.	Australia	10-25\$ 105-40E	Float	1	1985	+	0	С	TOGA
	Cocos Is. (Keeling)		12-075 96-53E	Float		1985	· · ·	•	c	TOGA
,	Darwin l	Australia	12-285 130-51E	Float		1981	+	0	C	, our
	Davis	Australia	68-355 77-58E	Pressure	l s	.,,,,,	0	•	c	
	Esperance	Australia	33-528 121-54E	Float		1965	· • (<u>ہ</u>	C	
	Fremantle	Australia	32-03\$ 115-43E	Float		1967	+	0	c	
	Hobart	Australia	42-535 147-20E	Float	S	1960	+	•	c	
	Lord Howe Is.	Australia	31-315 159-04E	Float	P	1986	0 I	<u>م</u>	С	TOGA
	Macquarie Is.	Australia	54-305 158-56E	Pressure	s		0	۵	c	
	Mawson	Australia	67-365 62-52E	Pressure	s		0	۵	С	
	Norfolk 1s.	Australia	29-04\$ 167-57E	Float	[Р	1985	+	٩	С	TOGA
	Port Adelaide (Outer HB)	Australia	34-47\$ 138-28E	Float	s	1982	+	۵	С	
51	Port Hedland	Australia	20-195 118-34E	 Float	11	1969	+	Q	, c	
	Townsville	Australia	19-165 146-50E	Float	P	1948	+	Q	С	ISLPP
279	Willis Is.	Australia	16-195 149-59E	Pressure	P		o	٩	c	TOGA
211	Bimini	Bahamas	25-45N 079-10W		•		0		ļ	TOGA
	San Salvador	Bahamas	24-00N 074-30W		i a	1	0	1	 	
36 	Chittagong (Bangladesh	 22-15N 091-50E 		 1 	 1961-1968 	0	; ; ;	 	,
120	Malakal	Belau	07-20N 134-28E	 Float 	P	 1974-1990 	+	0 	іс І	ISLPP, TOGA
194	Cananeia	Brazil	25-015 047-55	Float		1984	+	a	:	TOGA
198	Fernando de Noronha	Brazil	03-525 032-25W	Float		1972-1985	0	a	C	•
	ltaparica	Brazil	12-525 038-41W	Float		1985	+	•	•	TOGA
	Porto de Itaqui	Brazil	02-345 044-22₩	Float		1985	+	•	•	TOGA
,	Porto de Natal	Brazil	05-465 035-128	1			0	•		TOGA
195	Porto de	Brazil	22-525 043-08W	Float	A	1984	•	0	C	1
	Rio de Janeiro					1097				1
,	Porto de Rio Grande		32-065 052-11W	Float		[1983 1970				TOGA
	Porto de Santana	Brazil	00-035 051-10	Float		1970	▼	1 ¥	1	TOGA
	Penedo Sao Pedro e Sao Paulo (Brazil	01-00N 029-23W 	Pressure	*	1 				i
265	llha da Trindade	Brazil	20-305 029-18W	Float		1974	+	•	C	
107	Porto de Natal	Brazil	05-465 035-12W	1	A]	0	0	C	TOGA

Ocean: P - Pacific; 1 - Indian; A - Atlantic; S - Southern; Ar - Arctic; M - Mediterranean Sea; RS - Red Sea C - the station committed to GLOSS O - questionnaire has been received *** + station exist; O station does not exist

			1	l k	1		-	1	1	PARTICIPATION
					!	PERIOD OF	EXISTING		1	IN OTHER
NN	STATION	COUNTRY/	CO-ORDINATES	TYPE OF	0	OBSERVATION	STATION	[Q	C	INTERNATIONAL
1		TERRITORY		TIDE-GAUGE		FROM - TO	***	**	1 *	ACTIVITIES
		1		1						(PSMSL, TOGA,
		l	1	1	I		1	l	I	ISLPP, ITSU)
2801	pouals	 Cameroon	 04-03N 009-41E	 Float		1985	+		 c	 TOGA
j		 		1	i		l		i	
	Alert	Canada	82-30N 062-20W			1961-1984	0	•	С	l
	Halifax	Canada	44-40N 063-35W	Float		1919-1986	+	Q	C	PSMSL
	Nain	Canada	56-32N 061-41W	Float		1963-1986	+	a	C	PSMSL
	Prince Rupert	Canada	54-19N 130-19W	Float	P	1909-1986	+	Q	c	ISLPP
153	Little Cornwallis Island	Canada 	75-23N 096-57W 	Bubbler 	Ar 	1957-1984	0	• 	C	
152	Sach Harbour	Canada	71-58N 125-15W	1	Ar	1971-1984	0	9	jc	1
223	St John's Nfld	Canada	47-34N 052-42W	Float	Í A Í	1957-1986	*	Q	, c	PSMSL
156	Tofino	Canada	49-09N 125-55W	Float	P	1910-1986	+	Q	c	ISLPP
254	Porto Grande	 Cape Verde 	 16-52N 024-59W			1947-1950	0		C	TOGA
174	Antofagasta	Chile	23-395 070-25W	 Bubbler	 P	1945	+	٩	 C	ISLPP, TOGA
 137	Isla da Pascua] Chile	27-095 109-27W) Rubbles (s-:		1057		~		
137	ista da Pascua Juan Fernandez			Bubbler + Sat	P	1957	+	Q	C C	TOGA TOGA
•	Juan Fernandez Puerto Montt	Chile Chile	33-378 078-50W	Bubbler	P D	1957	+	0	C	TOGA
	Puerto Montt Puerto Williams	Chile Chile	41-295 072-58W 45-565 067-37W	Bubbler Elent	P	1945	+	0		1
	Puerto Williams Punta Arenas	Chile Chile		Float	P	1964	*	Q	C	}
	Punta Arenas Valparaiso	Chile Chile	53-10s 070-54w 33-02s 071-38w	Bubbler Bubbler + Sat	P P	1944 1944	+	0 0	C C	I I ISLPP, TOGA
i		I		1	i i	i			i	
	San Felix	Chile	26-175 080-07	Bubbler + Sat	P	1984 - 1986	+	Q		TOGA
189	Capitan Prat	Chile 	62-295 059-38W 	Bubbler	S 	1983-1986	0	Q	C 	
79	Dalian	China	38-52N 121-41E	Ì	P	1975-1987	+	٥	C	TOGA, ISLPP, IT
78	Zhapo	China	21-35N 111-49E	1	P	1975-1987	+	Q	, c	TOGA, ISLPP, IT
283	Lusi	China	32-08N 121-37E	1	P	1959	+ [Q		ISLPP, ITSU
247	Xiamen	China .	24-27N 118-04E	ĺ	P	1954	+	Q	C	TOGA, ISLPP, IT
94	Kanmen	China	25-05N 121-17E	1	P	1960-1987	+	Q	C	ISLPP, ITSU
170 [Buenaventura	Colombia	03-53N 077-06W	Float	P [1942	+	Q	C	ISLPP
171	Tumaco	Colombia	01-50N 078-44W	Float		1953	+	q	C	ISLPP
207	Cartagena	Colombia	10-24N 075-33W	Float		1949-1984	+	Q	C	PSHSL
261	Pointe-Noire	Congo	 04-47s 011-50E	Float		1959	+		1	TOGA
1431	Penrhyn	 Cook I-!								
	Rarotonga	Cook Isl.	09-015 158-04	Float + Sat	P	1977	+	٩	C	TOGA
• • •	kai uturiya	Cook Isl. 	21-125 159-46W	Float + Sat	P 	1977	+	٩	C	TOGA
167	Quepos	 Costa Rica	 09-24n 084-10w	 Elect		1057-1005			}	
	Isla del Coco	Costa Rica		Float	: :	1957-1985	+		l	TOGA
i		USER RICE	05-33N 087-04W	1	P 	1	0 [TOGA
257	Abidjan	Cote d'Ivoire	05-15N 004-00₩ 	 		1971	+		c	
	Gibara	Cuba	21-07N 076-07W	Float		1970	+	٩	с	TOGA
	Cabo San Antonio	Cuba	21-54N 84-54W	Float	i a j	1971	•]	Q	l c	TOGA
215 	Siboney	Cuba	23-05N 82-28W	Float			+	٩	C	TOGA
307 	Won San	Dem. People's Rep. of Korea	39-10N 127-26E	 Float 	P P 	1954- 	+	Q	C	TOGA
 225 	Godthaab/Nuuk, Greenland	Denmark	64-10N 51-44W	 Float		1950-1986	+	٩	c	
228	Angmagssalik, Greenland (Denmark	65-30N 37-00W				0	Q	с	
227	Nord, Greenland	Denmark	81-40N 18-00W	1	 A	1				
	Torshavn, Faroe Is.		62-00N 006-46W	 Float		1901-1007	0			
i	101		02 VVN UU0-40W	i ritoat		1901~1907,	+	٩	С	
2	Djibouti	Djibouti	11-36N 043-09E	1	 1	1957-1986 1970-1972	!			TOGA
÷.	1									

NN 	STATION	COUNTRY/ TERRITORY	CO-OR	DINATES	 TYPE OF TIDE-GAUGE 	0	PERIOD OF OBSERVATION FROM - TO	EXISTING STATION +++	0 ++	 c * 	PARTICIPATION IN OTHER INTERNATIONAL ACTIVITIES (PSMSL,TOGA, ISLPP, ITSU)
169	Santa Cruz	Ecuador	00-455	090-17₩	 Float + Pressure + Sat	 P -	1968-1985	+	Q	 c 	 ISLPP, TOGA
1	Suez (Port Taufig)	Egypt	29-55N	032-33E	 Float	 M	1900		1	1 	 TOGA
80	Port Said	Egypt	31-15N	032-18E	Float	RS	1923-1946	o		1	1
117	Kapingamarangi, Carolines	Fed Micronesia	 01-06N 	154-47E	 Float + Sat 	 P 	1978	•	٩	 C 	I ISLPP, TOGA
115	Ponape, Carolines	Fed Micronesia	06-59N	158-14E	Float + Sat	P	1974	+	Q	, c	ISLPP, TOGA
116	Truk Atoll, Carolines	Fed Micronesia	07-27N 	151-51E	Float	P 	1974	+	Q	C	ISLPP, TOGA
119	Yap, Carolines	Fed Micronesia	09-31N	1 38 -08E	Float	P	1974	+	Q	c	ISLPP, TOGA
122	Suva	Fiji	18-08s	178-26E	Float	P	1975	+	٩	с	ISLPP, TOGA
242	Brest	France	 48-23×	004-30W	 Float		1807	•	۵	 c	
	Clipperton	France		109-13W		^ P		0	•		TOGA
	Crozet is.	France	•	051-52E		1		0			
•	Dumont d'Urville	France	66-40s	140-01E	Ì	s		0		İ	
23	Kerguelen Is.	France	49-215	070-12E		11		0		l İ	
i	Le Robert, (Martinique)	France	14-42N 	060-55W	Float	A 	1972-1984	+	٩	С	TOGA
	Marseille	France	43-18N	05-21E	Float	M	1885	•	٩	C	
i	Nouméa (Nouvelle Caledonie)	France	Ì	166-26E	Float + Pressure + Sat		1967	+	Q	C	ISLPP, TOGA
142	Nuku Hiva, Marquesas Is.	France	08-565	140-05₩	Float 	P 	1985	· •	٩	C	TOGA
140	Papeete (Tahitı) *	France	17-325	149-34W	Float, Pressure	P	1957	· •	٥	C	ISLPP, TOGA
17	Pointe des Galets (Réunion)	France	20-55S	055-18E	Float	1 	1974	+	٩	c	TOGA
138	Rikitea, Gambier	France	23-085	134-57W	Float	P	1975	+	٩	C	ISLPP, TOGA
24	Saint Paul Is.	France	38-435	077-35E	1	I I		0			
96	Dzaoudzi (Mayotte)	France		045-15E	Float	1	1981	+	Q	C	1000
202 	Cayenne	France 	05-00N 	052-00W	Float	A 	1977	+			TOGA
284	Cuxhaven	Germany, Fed.	53-52N	008-43E	Float 	1	1843/extreme values 1918/hourly	+	٩	C 	
258	Tema	l Ghana	05-37N	00-00W	Float	^		+	٥	c	TOGA
255	Conakry	 Guinea	 09-30N	13-15W		 A		+ 			TOGA
209	Port-au-Prince/ Les Cayes	 Haiti 	18-34N	072-21W	 		 1949-1961 	 0 		' 	 TOGA, PSMSL
77	Quarry Bay	 Hong Kong 	22-18N	114-13E	Float	P	 1962 	 + 	, o	c	1 5 1
229	Reykjavık	l [[celand	64-09N	21-56W	Float		 1957-1986 	 0 	 0 	c 	
32	Cochin	 India	 09-58N	076-16E	 Float	1 I 	 1886-1891, 1955	 + 	0 1	, c 	TOGA
 41	Nícobar	 India	 07-00N	093-50E	1	1 1	1	0	i	i	TOGA
	Madras	Indía 	ι.	080-18E	Float 		1886-1889, 1894-1933,	+ 	0 	c 	TOGA
281	Marmagao	 India	 15-25N	073-48E	 Float	 1 	1952 1884-1888 1969-1990	 + 	 	 	 TOGA
29	Minicoy	 India	 08-17N	073-03E	 Float	1	1891-1895, 1963-1977	0	0	c	TOGA

Another tide gauge has been established in Papeete by the University of Hawaii

						PERIOD OF	EXISTING			PARTICIPATION IN OTHER
NN	STATION	COUNTRY/	CO-ORDINATES	TYPE OF	0	OBSERVATION	STATION	Q	C	INTERNATIONAL
ļ		TERRITORY		TIDE-GAUGE		FROM - TO	***	•	1.	ACTIVITIES
ļ							1	1	ļ	(PSHSL,TOGA,
1	I					ł	I	ļ		ISLPP, ITSU)
 I			·			1976	 		 	1
38	Port Blair	India	11-41N 092-46E	Float		1952-1964	1	i	i	TOGA
31	Veraval	India	20-54N 70-22E	Float	1	1955-1968,	+	a	C	TOGA
35	Vishakhapatnam	India	17-41N 083-17E	Float	1	1879-1884	+	Q	C	TOGA
1				1		1937		l	1	[
	Ambon	Indonesia	04-205 128-12E		P	1929-1931	0	Q	C	
49	Benoa	Indonesia	08-46\$ 115-13E 07-34\$ 108-59E	Float		1980 1980	0 +			
	Cilacap	Indonesia Indonesia	10-105 123-35E	Float		1960		Q	C	TOGA
	Kupang Manado (Bitung)	Indonesia	01-27N 125-12E	 Float	P	1985~1990,	+	1	1 	TOGA
45		Indonesia	00-585 100-20E	Float	11	1985	+	1	i	TOGA
	Pelabuhan Ratu	Indonesia	07-005 106-30E	Float	11	1985	+	1 	í	,
67		Indonesia	00-535 131-15E	i	1 I		0	l	i	
292	Surabaya	Indonesia	06-55\$ 112-14E	Float	P	1980	+	i o	i c	Ì
1	1				1 1		l	l	ļ	
239		Ireland	55-22N 007-20W	Float		1958	+	•	C	
240	Castletownsend	Ireland	51-32N 009-11W			1	1		1	1
210	Port Royal,Kingston	Jamaica	17-56N 076-51W			1954-1973	1 +	Q	C	TOGA, PSHSL
82 I	Aburatsu	Japan	31-34N 131-25E	Float	1 P	1929	l +	0	1 C	ISLPP
	Chichijima	Japan	27-05N 142-11E	Float	P	1975	•	, o	c	
88	Hakodate	Japan	41-47N 140-44E	Float	P	1955	, +	•	j c	ISLPP
85	Kushimoto	Japan	33-28N 135-47E	Float	P	1951	+	j o	C	ISLPP
89	Kushiro	Japan	42-58N 144-23E	Float	P	1949	+	• •	C	ISLPP
86	Mera	Japan	34-55N 139-50E	Float	P	1930	1 +	Q	C	ISLPP
•	Minamitorishima	Japan	24-18N 153-58E	1	P	1963-1971	0	٩	C	TOGA
	Nagasaki	Japan	32-44N 129-52E	Float	P	1961	+	0	C	
	Naha	Japan	26-13N 127-40E	Float	P	1966	+	<u> </u>	C	ISLPP
-	Syowa Ofunato	Japan Japan	69-008 030-35E 39-01N 141-45E	Pressure Float	S P	1976 1963	+ +	 9	 C	ISLPP
	Mombasa	Kenya	04-035 039-40E	Float		1986	+ +			TOGA
i					i				1	
145	Kanton, Phoenix Is.	Kiribati	02-485 171-43W	Float + Sat	P	1975	+	Q	C	TOGA
	Christmas, Line Is.	Kiribati	01-59N 157-28W	Float + Sat	P	1974	+	٩	C	ISLPP, TOGA
	Fanning, Line Is.	Kiribati	03-54N 159-23W	Float	P	1975	+	Q	C C	TOGA
113	Tarawa, Gilbert Is.	Kiribati	01-22N 172-56E	Float + Sat	P	1982	+	•	C	ISLPP, TOGA
271	Fort Dauphin	Madagascar	25-01s 47-00E	 Float			1		l I	TOGA
	Nosy-Be	Madagascar	13-245 048-17E	Float		1958-1972,	· +		i	TOGA
i		-	1			1985			i	
	Lumut	Malaysia	04-14N 100-11E	Float	11	1985	+	٩	c	TOGA
293	Cendering	Malaysia	05-16N 103-11E	Float	P	1985	1 +	Q	c	TOGA
271	Gan	Maldives		 		1087	 		1	1000
	Male	Maldives Maldives	00-425 073-10E	Float Float		1987 1987	+ 0		i 1	TOGA TOGA
i			1						י 	
•	Majuro	Marshall Is.	07-06N 171-22E	Float + Sat	P	1975	+	9	C	ISLPP, TOGA
110	Eniwetok	Marshall Is.	11-26N 162-23E	Float	P	1974-1979	0	Ì	1	
252	Nouadhibou	Mauritania	20-54N 017-01W			1981	0		l c	TOGA
16	Agalega Is.	Mauritius	 10-265 056-45E	 Pressure		1988	 +	Q	 C	TOGA
18	Port Louis Harbour	Mauritius	20-095 057-28E	Float		1987	1 +	9	l c	TOGA
19	Rodrigues,	Mauritius	19-415 063-25E	Float	1 .	1987	+	Q		TOGA
1	Port Mathurin				i		ł		1	
161	Cabo San Lucas	Mexico	22-53N 109-54W	 Float	 P	1974	(+	Q	 C	 TOGA, ISLPP
160	Isla Guadalupe	Mexico	28-53N 118-18W	Float	P	1977-1985	÷	0	i c	TOGA
	Manzaillo, Col.	Mexico	19-03N 104-20W	Float	P	1954 - 1982	, •	٩		TOGA, ISLPP
	Progreso, Yuc.	Mexico	21-18N 089-40W	Float	A	1952-1984	1 +	Q	C C	ISLPP, TOGA, PS
2671	Acapulco, Gro.	Mexico	16-50N 099-55W	Float	ÌP	1952-1986	+	a	1 C	ISLPP, PSMSL

 	STATION 1	COUNTRY/ TERRITORY	CO-ORD	INATES	 TYPE OF TIDE-GAUGE 	0 0 	PERIOD OF OBSERVATION FROM - TO	EXISTING STATION ***	• **	 c * 	PARTICIPATION IN OTHER INTERNATIONAL ACTIVITIES (PSMSL,TOGA, ISLPP, ITSU)
162	Socorro Is.	Mexico	18-14N	111-03₩	 Bubbler + Sat	 P	1975-1978, 1987	+	 •	 C	TOGA
164	Puerto Angel	Mexico	15-39N	096-30W	Float	P	1961 - 1986	0	Q	C	
212	Veracruz, Ver.	Mexico	19-11N	96-07W	Float	A	1953-1985	+	9	C	TOGA, PSMSL
282	Tan Tan	Morocco	28-30N	011-03W			1957-1959	0	Q	C	
111	Pemba	Mozambique	12-585	40-29E	 Float	 	1981	•			TOGA
	Inhambane	Mozambique	23-55\$	35-30E			1701	+			
37	Akyab	Myanmar, Union of	20-09N 0	92-54E	 		1937-1942	0			
141	⊭oulmein	Myanmar, Union of	16-29N 0	97-37E			1954 - 1964				
 114 	Nauru	Nauru	00-325	166-54E	 Float + Sat }	 P 	1976	+	٩	C	ISLPP, TOGA
127	I Auckland-Waitemata Harbour	New Zealand	 36-51S 	174-46E	i Float 	P 	1900	+	Q	C	ISLPP, TOGA
	Balleny Is.	New Zealand	,	162-50E	1	\$		0		ĺĺ	
	Bluff Harbour	New Zealand	46-365		Float	P	1920	+	Q	C	
	Chatham Is. [Kermadec Is.]	New Zealand New Zealand	43-50s 29-50s		1	P P		0 0			TOGA
	Scott Is,	New Zealand	67-00s		1			0			IUGA
•	Wellington Harbour	New Zealand	41-175		 Float	• •	1944-1986	+	٩	С	ISLPP
259	Lagos	Nigeria	06-25N	0 3 -27E				+	٩	С	TOGA
118	Saipan	N. Mariena Is.	 15-14N	145-44E	 Float 	P	1978	+	Q	c	TOGA
232	 Bjornoya (Bear 1s.)	Norway	 74-30N	019-00E	l [
	Bouveteya (Bouvet Is.)	Norway	, 54-22\$ 	03-22E	 	A 					
234	Rorvik	Norway	64-52N	011-15E	Float] A	1970	+	Q	C	
275	Honningsvag	Norway	70-59N	025-59E	Float	A	1970	+	٩	C	
136 [Peter Is.	Norway	68-47S			S		0			
	Jan Mayen Is. Maloy	Norway Norway	1	008-00W 005-07E	 Float	A	1945	+	0	C	
l		0 -	 23-37N		 Float		1987	· ·		 	TOGA
	Muscat(Qaboos Port) Salalah	Oman Oman		054-00E		I I			 		TOGA
30	Karachi, Manoro Is.	Pakistan	 24-48N 	066-58E	 Float 	I	1916, 1921 1936-1949,	, + 	• 	C 	
295	Gwadar	Pakistan	25-07N	062-20E	Float	1 	1986 	+ 	• 	C 	
168	Balboa	Panama	08-58N	79-36W	1	P	1909-1985	+	İ	i	l
	Coco Solo	Panama	•	079-53W			 		1	 	
63	Alotau	Papua New Guinea	 10-21s 	150-298	 Float 	 P 	 1984 	+ 	 		operated by CSIRO, Austra-
64	Vanimo	Papua New Guinea	02-415	141-19E		Р 	t I	+ 	 	 	lim TOGA
272	Daru	Papua New Guinea	09-04\$	143-12E	 	Р 	[0 	 	 	TOGA
65	Rabaul	Papua New Guinea	04-12S	152-11E	Float + Sat 	P	1974 	+ 	• 	C 	ISLPP, TOGA
173	Callac	Peru	 12-03s	077-09₩	 Float + Sat 	P 	 1942-1990 	 • 		c 	 TOGA, Tsunami ISLPP
71	Davao, Davao Gulf	Philippines	07-05N	125-38E	Float	, ГЪ	1951	+	0	•	TOGA
	Jolo, Sulu	Philippines		121-00E	Float	P	1951	•	0	C	TOGA

 	STATION 	COUNTRY/ TERRITORY	CO-ORD	INATES 	TYPE OF TIDE-GAUGE		PERIOD OF OBSERVATION FROM - TO	EXISTING STATION	•	c •	PARTICIPATION IN OTHER INTERNATIONAL ACTIVITIES (PSMSL,TOGA, ISLPP, ITSU)
	Legaspi, Albay Manila, S. Harbor	 Philippines Philippines	13-09N 14-35N		Float Float	 P P	1951 1951	+	0 0	C C	TOGA (
1		l		I		İ İ					ĺ
	Cascais Funchal (Madeira)	Portugal Portugal	38-41N 32-38N	009-25W 16-54W	Float Float			+	Q Q	C C	1
	Ponta Delgada, (Azores)	Portugal		025-40W	Float			+	• 	c	l
244	Flores (Azores)	Portugal	39-27N	031-07₩	Float			+ 	Q 	C	1
206	San Juan	Puerto Rico/USA	18-27N	066-05W				+			TOGA
84	Pusan	Rep. of Korea		129-02E	Float	P 	1960	 			
182 	Acajutla	El Salvador	13-35N	089-50W		P 	1962-1985	+ 			
260	Sao Tome	Sao Tome and Principe	00-25N	06-30E					 		TOGA
253	Dakar	Senegal	14-38N	17-27⊌			1957-1966	1	 		TOGA
14	Aldabra	Seychelles	09-30s	046-20E	I			, 0		ł	TOGA
273	Port Victoria, Hodoul Is.	Seychelles	04-40S	055-28E	Float 			+ 	 	t 	TOGA
256	Aberdeen Point	Sierra Leone	08-30N	13-14¥	 Float) 0 	•	 c 	TOGA
44	Keppet Harbour	Singapore	01-28N	103-50E	Float			[+]		, (,	TOGA
66	Honiara	Solomons	09-26S	159-57E	Float + Sat	P 	1974	+ 	a 	c 	TOGA
7 6	Mogadishu Hafun 	Somalia Somalia	02-01N 10-27N		Float 			0 0	 1	 	TOGA TOGA
13	Durban	(PSMSL)	 29-53\$	031-00E	1		1926-1982	+			
	Marion Is.	(PSMSL)	46-53\$		1	11		0	ļ	!	
	Port Elizabeth Simonstown	(PSMSL) (PSMSL)	34-00s 34-11s				1957-1981	 +	1		
249	 Ceuta	Spain	 35-54N	005-19W	Float		1944-1987	 +	Q	 C	1
	La Coruna	Spain	43-32N	008-24¥	Float		1943-1987	+	j e	i c	İ
251	Las Palmas, Canary Is. 	Spain	28-08N 	015-25W	Float 	A	1949-1956, 1969-1987	+	Q	C 	TOGA
33	 Port of Colombo 	Sri Lanka	 06-56N 	079-51E	Float		1934 - 1957	 +		 	
233	, Goteborg-Torshamman 	Sweden	57-41N 	011-48E	Float 	A	1967-1986	+	Q 	c 	
	Mtwara Zanzibar	Tanzania Tanzania	10-085 06-095		 Float		1984	0 +	0 4	c c	TOGA
42	Ko Taphao Noi	Thailand	07-50N	098-26E	 Float	1	1973	 +	 0	 c	
39	Ko Lak	Thailand	11-47N		Float 	Р 	1973	+ 	Q 	c 	1
125	Tongatapu	Tonga	21-10\$ 	175-15W	1	P 		1			TOGA
203	Port of Spain	Trinidad and Tobago	10-35N 	061-30W	Float & Bubbler	A	1982 	+	Q 	c]
121	Funafuti, Ellice Is.	Tuvalu	 C8-325 	179-13E	 Float + Sat 	 P 	 1977 	 + 	 0 	c 	 ISLPP, TOGA
]	Gibraltar	U.K.	1	005-21W	 Float	1	 1961	1	1		 PSMSL

 	STATION	COUNTRY/ TERRITORY	 CO-OF 	RDINATES	TYPE OF TIDE-GAUGE	0 	PERIOD OF OBSERVATION FROM - TO	EXISTING STATION	 0 ** 	c * 	PARTICIPATION IN OTHER INTERNATIONAL ACTIVITIES (PSMSL,TOGA, ISLPP, ITSU)
	Ascension	U.K.	•	014-25₩	Pressure	 A	1983	+	 0	 c	 TOGA
221] 	Bermuda St. Georges Is.	U.K.	32-22N 	64-424	Float 	A	1932-1979	•	0 	C 	TOGA, PSHSL
26	Diego Garcia	U.K. 	07-00s	072-30E] {	1	1959-1964, 1986	+		ļ	TOGA (opera- ted by USA)
236	Lerwick	U.K.	60-09N	001-08W	 Float/Bubbler		1957-1989	+	0	i c	PSMSL
241	Newlyn	U.K.	50-06N	005-33W	(1) Float (2) Bubbler	A	1915-1984(1) 1985 (2)	+	Q		
187	South Georgia	U.K.	, 54-15s	036-45w			1957-1959	o		ł 1	1
296	North Caicos	U.K.		072-00W	l	I A		0		ł	1
188	Faraday	U.K.		064-16W	Ì	s		, i		1	1 I
264	St. Helena	U.K.	15-585	005-42₩	Pressure	A	1986	+	e	, 1 c	TOGA
238	Stornoway	U.K. 	58-12N	006-23W	(1) Float/ Pressure		1928-1982,	+	Q	c 	
ا 2661	Tristan da Cunha	Ι Ι υ.κ.	1 77 076	13 100	(2) Bubbler		1985				
305 j	Falkland Is. (Malvinas)	U.K. 	37-03s 51-45s 	12-18W 057-56W	Pressure 	A S 	1986 1988- 	+	Q	C 	
]	South Orkney Is.	U.K.	60-425	045-36W		S	 	0		 	
	Ventnor, N.J. (Atlantic City)	U.S.A. 	39-20N	74-29W	Float	A 	1911-1985 	+	٩	c	
219	Cape Hatteras N.C.	U.S.A.	35-13N	75-38W	Float		1973	+	٩	i c	
107 	French Frigate Shoal H.	U.S.A. 	23-52N	166-17W	Float + Sat	P 	1975	+	Q	C	ISLPP, TOGA
217	Galveston, TX	U.S.A.	29-17N	94-47W	Float		1957-1986	+	Q	C	
149	Guam, Marianas	U.S.A.	13-26N	144-39E	Float	P	1948	+	Q	C	
108	Honolulu, HI	U.S.A.	21-18N	157-52W	Float	P	1905	+	•	C	ISLPP, TOGA
109	Johnston Island	U.S.A.	16-44N	169-32W	Float	P	1950	+	٩	C	•
216	Key West, FL	U.S.A.	24-33N	81-48W	Float		1926-1979	+	٩	с	PSMSL
i	Kwajalein Island Marshałl Is. Miami (Haulover	U.S.A. U.S.A.	08-44N 25-46N	167-44E 80-08₩	Float Float	P A	1946 1981	+	9 9	C C	TOGA PSMSL
 134	Pier) Mc Murdo	Ì	Ì			İ			-		
	Midway Island	U.S.A. U.S.A.	28-13N	166-40E 177-22₩	 Float	S P	1947	0	٥	C	TOGA, ISLPP
	Pago Pago, Samoa	U.S.A.		177-22W 170-41W	float	P P	1947	+ +	9		TOGA, ISLPP
	San Francisco, CA	U.S.A.		122-28W	Float	I P	1854	+	0		ISLPP
154	Sitka, AK	U.S.A.		135-20₩	Float		1938	+			ISLPP
157	South Beach, OR	U.S.A.	44-38N	124-03W	Float		1962	+			ISLPP
		U.S.A.		159-22W			1955	+		, C	
	Unalaska, AK	U.S.A.		166-32₩	Float	P	1955	+	٩) C	ISLPP
	Wake Island	U.S.A.		166-37E			1950	+]	٩	C	ISLPP, TOGA
	Kahului, Hl	U.S.A.		156-28W	Float		1951	+	٩		
	Hilo, HI Peosecola fi	U.S.A.		155-04W	Float		1946	+	0		n a u a c
	Pensacola, FL Sand Point, AK	U.S.A. U.S.A.	30-24N	87-13¥			1923-1980	+	•	C	PSMSL
	Seward, AK	U.S.A.		160-30W 149-26W	Float Float	P D	1923-1986	+	0 0	C C	
	Scripps Pier, CA	U.S.A.		149-20W	Float		1924-1986	+ l	Q	C C	
	Ft. Pulaski, GA	U.S.A.	32-02N		Float		1935-1986	+	0	C	
	Palmer (Antarct.)	U.S.A.	64-465			s	1	0	-	i	
116	Truk Atoll,	U.S.A. (Fed Micronesia)	07-27N	151-51E	Float	• •	1953	+	Q	C 	ISLPP
151	Prudhoe Bay, AK	U.S.A.		148-30W	Float	Arl	1976	+	٩	c	
290	Newport, RI	U.S.A.	41-30N	71-20W	Float		1930-1980	+		j c	
	Palmyra	U.S.A.	05-52N	162-06₩		: :	1949-1981	o		1	
	Adak	U.S.A.		176-38₩	Float		1943-1986	+	Q	C	ISLPP
	Massacre Bay, Attu Is.	U.S.A. 	52-50N	173-12E		P 	1943-1972 	0		 	
79.4.1	Nome	U.S.A.	44 300	165-30W		P	i	0 1			

1		I				PERIOD OF	EXISTING	l	I .	IN OTHER
NN	STATION	COUNTRY/	CO-ORDINATE	S TYPE OF	0	OBSERVATION	STATION	9	C	INTERNATIONAL
1		TERRITORY	1	TIDE-GAUGE	ł	FROM - TO	***	••	•	ACTIVITIES
- 1		1	1		I		1	1	I	(PSHSL,TOGA,
I		I	I	I	I		l	I	ļ	ISLPP, ITSU)
		!						1	1	
231 	Barentsburg, Spitsbergen	U.S.S.R.	78-04N 14-1	5E	Ar	1948-1982	+ 	• 	C 	
270	Novolazarevskaya	U.S.S.R.	70-465 011-5	DE	İs			Ì	1	I
25	Mirny	U.S.S.R.	66-335 093-0	1E	s			İ	i	i
294	Molodezhnaya	U.S.S.R.	67-405 045-5	DE	s			İ	i	i
274	Murmansk	U.S.S.R.	68-58N 033-0	3E Float	A	1959-1982	+	ļ	j c	İ
97	Kaliningrad	U.S.S.R.	54-42N 020-2	9E Float	A	1959	•	i e	jc	1
98	Tuapse	U.S.S.R.	44-06N 039-0	E Float	A	1959	+	Q	C I	I
92	Nagaevo Bay	U.S.S.R.	59-44N 150-4	2E Float	P	1959	*	0	C	i i
93	Petropavlovsk-	U.S.S.R.	52-59N 158-3	9E Float	P	1959	+	Q	1 C	ISLPP
	Kamchatsky	1	ł					{	1	1
91	Leningradskay	U.S.S.R.	69-308 159-2	3E	S				1	1
135	Russkaya	U.S.S.R.	74-465 136-5	19	S			1		I
99	Russkaya Gavan	U.S.S.R.	76-14N 62-3	5E	A	1959	+	Q	C	1
90	Yuzno Kurilsk	U.S.S.R.	44-01N 145-5	2E	P	1959	+	Q	C	ISLPP
300	Montevideo	l Uruguay 	34-545 056-1	5W Float			•	 9	c	l
298	Aves is.	l Venezuela	15-39N 063-3	i 5W Float	 A	1987	+	 0	 C	1
299	La Orchila	Venezuela	11-48N 066-0	BW [•	1987	+	0	c	ł
75	Qui Nhon	 Vietnam	 13-46N 109-1	SE Float	P	1987	0	Q	l c	ADDA
3	Aden	 P.D.R. Yemen	12-47N 044-5	і РЕ		1879-1969	0	1	1	 TOGA
306	Socotra Is.	P.D.R. Yemen	12-30N 054-0	DE	ίτΪ		٥	I	i	TOGA

-

Ocean: P - Pacific; 1 - Indian; A - Atlantic; S - Southern; Ar - Arctic; M - Mediterranean Sea; RS - Red Sea C - the station committed to GLOSS
 Q - questionnaire has been received
 station exist; D station does not exist

Type of tide gauge is given as either float, bubbler or pressure. Where satellite transmission facilities are available this is indicated by '+ Sat' in the Type of Tide Gauge column.

I
5.1 GENERAL SCHEME FOR DATA COLLECTION AND EXCHANGE

One of the major functions of GLOSS is to provide sea level data in a unified format and using agreed procedures for international exchange through existing IODE and IGOSS mechanisms. Therefore these activities should be co-ordinated with the IOC Committee on International Oceanographic Data and Information Exchange (IODE) and the Joint IOC-WMO Committee on Integrated Global Ocean Services Systems (IGOSS) as well as with the relevant international bodies dealing with planning and co-ordination of the TOGA and WOCE Programmes (SCOR-IOC CCCO, WMO-IOC Intergovernmental TOGA Board, IOC-WMO Intergovernmental WOCE Panel).

The flow of sea level data from the GLOSS network includes the following major streams:

(i) Submission of monthly mean sea level values to the Permanent Service for Mean Sea Level (PSMSL); hourly and monthly mean values should be made available by national authorities as required for scientific analysis. Recommendations for submission of data to PSMSL and the format for submission of monthly and annual sea level data to PSMSL are shown in Annex VII.

(ii) Submission of sea level data on real or near-real-time basis to specialized International Sea Level Data Analysis Centres, established within the framework of international research and monitoring programmes:

a) TOGA Sea Level Centre (Global Tropical zone to 30° latitude) (Format and Procedures for sea level data submission are shown in Annex VIII).

b) Specialized Oceanographic Centre for the IGOSS Sea Level Programme in the Pacific Ocean (Format and Procedures for sea level data submission are shown in Annex-VIII).

c) Specialized Oceanographic Centre for the IGOSS Sea Level Pilot Project in the North and Tropical Atlantic.d) WOCE Sea Level Data Assembly Centres (DACs).

e) Submission of data to RNODC's for sea level data, which can be established in support of projects or specific regional sea level activities (as for example MEDALPEX and POEM, see Annex IV).

(iii) Final submission of sea level data from the GLOSS network and specialized sea level analysis centres and their archiving in the World Data Centres (Oceanography).

(iv) Dissemination of sea level data and products by specialized sea level data centres to the participating countries, other international centres and scientist.

(v) Regular monitoring of GLOSS sea level data flow and preparation of inventories of sea level data.

Attention must be given to the quality control of sea level data, and data exchanged through the above procedures should be accompanied by necessary documentation so that users can evaluate its reliability. The timeliness of data submission is also very important. Near-realtime and non-real-time data flow are shown separately in the diagram (Figure 10).

This diagram describes the principle flow of GLOSS sea level data, showing relationship between various national and international centres. More specific descriptions of data flow and data collection/exchange procedures are developed for individual research projects, as shown, for example in the Implementation Plan for TOGA.

5.2 FORMATS FOR DATA EXCHANGE

The participants of GLOSS should use unified formats for data collection, exchange and archiving. Recommended formats for sea level data submission to PSMSL, SOC for ISLPP and TOGA Sea Level Centre are shown in Annexes VII and VIII.

The Committee for IODE has developed and approved the IOC General Magnetic tape format for the International Exchange of Oceanographic Data (GF3). Furthermore, a Standard GF3 Subset for Mean Sea Level (PSMSL) has been developed and approved. It is the format in which the PSMSL and WDCs (Oceanography) prefer to receive and transmit monthly mean sea level data (Annex VII).

Figure 10. Flow of GLOSS Sea-Level Data.

6. Sea Level Products Preparation and Dissemination

One of the primary functions of GLOSS is to organize the preparation of various sea level products: in the form of data extracts, data summaries, data catalogues, sea level charts and other forms of data analysis required for various international programmes and studies and wide distribution to Member States, research centres and individual scientists.

There are several international centres involved in sea level data collection and dissemination, and in the preparation of sea level products.

6.1 THE PERMANENT SERVICE FOR MEAN SEA LEVEL

The Permanent Service for Mean Sea Level (PSMSL) was established in 1933 at Bidston Observatory, Merseyside, UK. It is a member of the Federation of Astronomical and Geophysical Services (FAGS) of the International Council of Scientific Unions (ICSU). Under the aegis of the International Association for the Physical Sciences of the Ocean (IAPSO), the PSMSL is charged with the collection, dissemination and analysis of mean sea level data. The activities of PSMSL are supported through FAGS and through the Intergovernmental Oceanographic Commission (IOC), and by the United Kingdom Natural Environment Research Council (NERC). PSMSL still operates at Bidston Observatory, hosted by the NERC Proudman Oceanographic Laboratory.

Monthly and annual mean values of sea level are sent to PSMSL by national authorities, together with details of gauge location, missing days, and a definition of the datum to which the measurements are referred. Received data are checked for consistency. If possible, values are reduced to Revised Local Reference (RLR); this involves the identification of a stable, permanent bench mark close to the tide-gauge and the reduction of all data to a single datum level which is referred to this benchmark. This ensures continuity with subsequent data. The computer data bank at present holds series from over 1,000 stations. There are 518 stations for which the PSMSL has at least 20 years of data, and 115 stations have data from before 1900. The most recent year for which PSMSL holds data from GLOSS stations is shown in Table 2.

Data and other information are available free of charge to the scientific community. Updated listings can be sent, and data are available on magnetic tape in the GF3 approved format. A catalogue of all data held by PSMSL was published in 1987, and is available on request.²⁸

PSMSL also provides information and advice to organizations interested in measuring sea level. Details of different types of tide-gauges and suitable locations can be given, and advice on data reduction and filtering methods is available.

PSMSL sometimes acts as a sea level data co-ordinator for special international projects such as the 1981-1982 Mediterranean Experiment MEDALPEX.¹²⁷

Analyses produced from the mean sea level data bank include statistics of local and global trends, seasonal variations and low frequency variations. They also include the identification of anomalously high or low levels which may occur in particular areas. The aim is to produce summaries which may be used for direct comparison with data from other scientific studies, such as climatology and earthquake prediction.

6.2 TOGA SEA LEVEL CENTRE

The Tropical Ocean - Global Atmosphere programme (TOGA) has established a TOGA Sea Level Centre at the University of Hawaii. The purpose of the centre is to collect all sea level data in the TOGA area between 30° N and 30° S during the ten years of the TOGA project, 1985 to 1995, and make them available for research. The TOGA Sea Level Centre will also obtain and archive past sea level data for the same region, as long as they are made available from the originators. The importance of sea level data has been enhanced by the need for calibration of satellite altimeters like GEOSAT and for the TOPEX mission planned for WOCE. The creation of GLOSS and the requirements of CCCO for climate monitoring have placed additional emphasis on the value of sea level information. The TOGA Sea Level Centre is funded by NOAA through the U.S. TOGA Office. It co-operates closely with NODCs and the World Data Centres.

The scientific requirements of TOGA specify the need for daily mean sea-level values at all observing stations. Because scientific study of sea-level demands different types of filtering of the original data, the need for daily mean sea level requires the acquisition of hourly or more frequent original data. After acquisition the sea level data are subjected to a stringent quality control before they are filtered and archived.

Data acquisition during the first year of operation of the Sea Level Centre has been concentrated on the Pacific Ocean, where an extensive sea level network exists, and where most of the ongoing TOGA research is concentrated. During the second year acquisition has been expanded to the Indian Ocean, where a new sea level network is being established for TOGA. In the following years data from the Atlantic Ocean will also be included into the archive.

Data are being made available to scientific investigators in two different modes. Some sea level stations, presently 26, transmit their data by satellite. Data from these stations are available within about four weeks, although they may be subject to later correction to absolute levels.

The TOGA Sea Level Centre also handles the preparation of the monthly synoptic sea level maps for the IGOSS Sea Level Programme (ISLP). As part of this project monthly mean sea level data from 78 stations in the Pacific are also available within one month.

The incoming sea level data are usually received, quality controlled and filtered in batches of one year. The Sea Level Centre maintains archives of high frequency, hourly, daily and monthly sea level values on magnetic tapes. These data sets are available on request, and 34 such requests from various agencies and scientists have been filed during 1987.

6.3 WOCE SEA LEVEL CENTRES

The flow of sea level data for the WOCE Project will include hourly (or more frequent) transmissions of tidegauge measurements on a real-time basis, using satellite data collection links or other appropriate communications, to one or more specialized WOCE Sea Level Data Centres for global analysis and merging with satellite altimetry data and computing the state of the world ocean circulation and the production of further derived products. The activities of the WOCE sea level centres are described in the WOCE Implementation Plan prepared by the Scientific Steering Group for WOCE which was published in the second half of 1988.¹²⁸

6.4 SPECIALIZED OCEANOGRAPHIC CENTRE (SOC) FOR IGOSS SEA LEVEL PROGRAMME IN THE PACIFIC

A Specialized Oceanographic Centre (SOC) for the IGOSS Sea Level Pilot Project (ISLPP) was established in March 1984 at the University of Hawaii under the direction of Prof. Klaus Wyrtki by joint action of the Intergovernmental Oceanographic Commission (IOC) and the World Meteorological Organization (WMO). The government of the United States has funded the centre for its intended operational period of five years. The IGOSS Sea Level Pilot Project is co-located with the sea level centre for the Tropical Ocean Global Atmosphere project (TOGA).

The purpose of the IGOSS Sea Level Pilot Project is to make monthly mean sea level data available to users in a timely fashion and to generate products which are valuable for scientific analysis of climate related ocean processes.

As of July 1987 the number of participating countries has increased to 30 and a total of 78 stations participate in the project. The monthly maps are published about 28 days after the end of each month. They are distributed to a mailing list of about 140 users, and the national contacts of several participating countries distribute them further. The maps are also reproduced in the monthly bulletin of the Climate Analysis Centre of NOAA and in the monthly bulletin of the World Climate Programme published by WMO.

The SOC also prepares at quarterly intervals an index of upper layer volume for the equatorial Pacific Ocean, which is used as an indicator for the development of El Niño and is reproduced in the Climate Analysis Bulletin of NOAA. It is also intended to produce indices of the strength of equatorial currents in the Pacific on the basis of sea level differences between selected stations.

The data from the 78 sea level stations participating in ISLPP are available for the years 1974 to 1986 on magnetic tape to interested parties. They are also part of the data archive of the TOGA Sea Level Centre. Samples of the products issued by the SOC for ISLPP are shown in Annex VIII Recommendations for sea level submission.

The IOC-WMO Committee for IGOSS at its fifth session (November 1988) recommended that the Pilot Project became a permanent operational programme of IGOSS under the title IGOSS Sea-Level Programme in the Pacific (ISLP/PAC).

6.5 SPECIALIZED OCEANOGRAPHIC CENTRE FOR THE IGOSS SEA LEVEL PILOT PROJECT IN THE NORTH AND TROPICAL ATLANTIC (ISLPP/NTA)

In 1988, the IOC Executive Council approved the proposal to launch the IGOSS Sea Level Pilot Project for the North and Tropical Atlantic in order to collect monthly mean sea level data from sea level stations of the North and Tropical Atlantic (to 30° S) and to produce a monthly sea level maps for this area. The Marine Environmental Data Service (MEDS) of Canada will act as SOC for the ISLPP in the North and Tropical Atlantic.^{27, 33, 91}

The basic component of ISLPP/NTA will be the receiving, processing and quality control of the monthly mean sea level data from existing and future permanent gauging stations of Member States of the North and Tropical Atlantic Ocean Basin. The area covered extends from 65° N to 30° S, to include the TOGA area, and from 100° W to 20° E. In the beginning the project will involve the participation of 24 different Member States located around the North and Tropical Atlantic Ocean Basin.

The basic parameter required is the monthly mean sea level recorded at various tide stations in the North and Tropical Atlantic Ocean Basin. As there are many ways to compute such a parameter, Member States will be requested to indicate which of the following methods has been used to determine the data set from each gauging station.

(i) Arithmetic mean of hourly values.

(ii) Low pass numerical filter of hourly values.

(iii) Arithmetic mean of paired high and low tidal levels.

The time periods to calculate the mean will be the regular calendar months. At the end of each month, the participating Member States will send to MEDS the computed monthly mean sea level and the number of values used to compute that mean for each station under the responsibility of that country. The number of values to compute the mean is required only to provide an indication of its reliability. The station and month identification are required together with the mean sea level values.

The following is an illustration of the suggested table that can be used for the data to be sent to the ISLPP/NTA Data Centre (MEDS). The month and year are indicated at the top of the form. The station identification includes the GLOSS number (NN), the station name and the name of the responsible country for that station. Following the identification information are the monthly mean values for that station month and the number of values used to compute the monthly mean. In the sample shown below the monthly mean has been computed from the hourly values.

Mean Sea Level Data for January 1989

- NN = 222 Station is Halifax Country is Canada Monthly mean - 1.13 number of values = 744 NN = 223 Station is Sr. John's Country is Canada
- Monthly mean = 1.15 number of values = 744

The IOC-WMO Committee for IGOSS at its fifth session recommended to initiate this Pilot Project in 1989.

6.6 INTERNATIONAL HYDROGRAPHIC ORGANIZATION

Many of the Hydrographic Authorities of the 54 Member States of IHO are actively concerned with the observation of tidal levels, both for the application of tidal height to reduce sounding measurements to Chart Datum, and for prediction of tidal heights for the information of mariners using nautical charts.

Much of the information acquired has been analyzed and is stored in the IHO Tidal Data Constituent Bank. The data is available from this bank in accordance with agreed procedures, and the bank is regularly updated as new constituents become available. In some cases, the Hydrographic authorities are the national focal point for tidal matters.^{53, 54, 60, 65, 69, 102, 103}

COL COL COL	UMN 1 = GLOSS NUMBER UMN 2 = STATION NAME UMN 3 = RESPONSIBLE COUNT UMN 4 = COMMITTED TO GLOSS UMN 5/6 = PSMSL COUNTRY/STA UMN 7 = LATEST DATA IN PSI	S FLAG FION CODE		
185	LOBITO BAHIA ESPERANZA	ANGO LA ARG ENTINA ARG ENTINA	C A /001 1 C	978
	BAHIA SCOTIA	ARGENTINA	č	
	JUBANY MAR DEL PLATA	ARGENTINA		946
	PUERTO DESEADO	ARG ENT INA ARG ENT INA ARG ENT INA		937
	PUERTO MADRYN	ARGENTINA	C 860/031 1	984
	USHUAIA	ARGENTINA	C 860/001 1	969
		AUSTRALIA	C 680/025 19 C 680/141 19 C 680/078 19 C 680/486 19	980
57	BOTANY BAY, SYDNEY		C 680/141 1	989
	BRISBANE	AUSTRALIA	C 680/078 1	984
		1 TTO 000 A T T A	C 680/486 1	983
	BUNDABERG	AUSTRALIA AUSTRALIA AUSTRALIA AUSTRALIA	C 680/073 1	985
	CARNARVON	AUSTRALIA	C 680/476 1	984
	CASEY	AUSTRALIA	C	
47	CHRISTMAS IS.	AUSTRALIA	C 563/001 1	966
46	COCOS IS. (KEELING)	AUSTRALIA	C 563/001 1 C 680/501 1 C 680/011 1	969
62	DARWIN	AUSTRALIA	C 680/011 1	984
	DAVIS	AUSTRALIA	C	00E
	ESPERANCE	AUSTRALIA	C 680/446 1	
		AUSTRALIA		985 985
		AUSTRALIA		
		AUSTRALIA	C 680/121 1 C 680/208 1	970
		AUSTRALIA	C 0007200 1	3/4
		AUSTRALIA		965
	NORFOLK IS. PORT ADELAIDE	AUSTRALIA AUSTRALIA	C 680/311 1	985
	PORT HEDLAND	AUSTRALIA	C 680/481 1	985
		AUSTRALIA	C 680/052 1	960
		AUSTRALIA		981
		BAHAMAS	0 000,000 -	
	SAN SALVADOR	BAHAMAS		
	CHITTAGONG	BANGLADESH	510/0 25 1	968
	MALAKAL	BELAU	C 710/021 1	987
	CANANEIA	BRAZIL	C 874/051 1	986
198	FERNANDA DE NORONHA	BRAZIL	C 874/141 1	972
196	ITAPARICA	BRAZIL	С	
200	PORTO DE ITAQUI	BRAZIL	C	
	PORTO DE NATAL	BRAZIL	С	
	PORTO DE RIO GRANDE	BRAZIL	C 860/004 1	.976
	PORTO DE SANTANA	BRAZIL	·	.984
195	RIO DE JANEIRO	BRAZIL	C 874/091 1	968
199	ST. PETER & ST. PAUL ROCKS	BRAZIL		
265	TRINIDADE IS.	BRAZIL	C 874/101 1	975
	AKYAB	BURMA		.942
	MOULMEIN	BURMA	530/021 1	964
	DOUALA	CAMEROON	0 070/162	077
	ALERT	CANADA		.977
	HALIFAX LITTLE CORNWALLIS IS.	CANADA CANADA		.984 .977
		CANADA		.983
	NAIN PRINCE RUPERT	CANADA	C 822/001 1	.984
	SACHS HARBOUR	CANADA		.982
	ST. JOHNS, NEWFLND.			984
	or. como, num mo.			-

	TOFINO	CANADA		822/116	
254	PORTO GRANDE (ST. VICENTE)	CAPE VERDE	С	380/001	1950
	ANTOFAGASTA	CHILE	С	850/012	1987
	BASE ANTARCTICA (CAPT. PRAT)		С		
176				850/037	1984
1 2 2	DACOLA IS	CHILE CHILE	č	810/002	1004
13/	PASCUA IS.	CHILE	C	810/002	1984
1/8		CHILE	С	850/051	1970
		CHILE		850/081	
179	PUNTA ARENAS	CHILE	С	850/061	1970
177	SAN FELIX IS.	CHILE	С		
		CHILE	С	850/032	1987
79		CHINA	С	610/044	1979
94	KANMEN	CHINA	Ċ	610/044 610/016 610/032	1989
293	LIST	CHINA	č	610/032	1989
205	LOST			610/032	1000
247	X LAPIEN	CHINA			
/8	ZHAPO	CHINA		610/002	
170	BUENAVENTURA	COLOMBIA	С	842/011	1988
207	CARTAGENA	COLOMBIA	С	902/021 842/021 424/021	1988
171	TUMACO	COLOMBIA	С	842/021	1988
261	POINTE NOIRE	CONGO		424/021	1979
143	PENRHYN	COOK ISLANDS	С	424/021 775/001 785/001	1986
139	RAROTONGA	COOK ISLANDS	С	785/001	1987
166	T DEL COCO	COSTA RICA	-		
167	QUEPOS	COSTA RICA		836/011	1969
	ABIDJAN	COTE DIIVOIDE	~	836/011 405/001 930/071 930/031	1076
	ABIDJAN	COTE D'IVOIRE		403/001	1976
		CUBA	C	930/071	1986
	GIBARA	CUBA	C	930/031	1986
215	SIBONEY	CUBA		930/016	1987
228	ANGMAGSSALIK, GREENLAND	DENMARK	С		
225	GODTHAB/NUUK, GREENLAND	DENMARK	С	980/031	1986
	NORD, GREENLAND	DENMARK	С	•	
	THORSHAVN, FAEROES	DENMARK	č	015/011	1986
	DJIBOUTI	DJIBOUTI	Ŭ	615/011	1072
			~	015/011 475/001 845/034	1007
	-	ECUADOR		845/034	1907
	LA LIBERTAD	ECUADOR	C	845/012	1989
80	PORT SALD	EGYPT		330/001	1946
1	SUEZ	EGYPT		330/041	1986
182	ACAJUTLA	EL SALVADOR			
117	KAPINGAMARANGI, CAROLINE IS.	FED.MICRONESIA	С	710/026	1987
119	PONAPE, CAROLINE IS.	FED. MICRONESTA	С	710/031	1987
116	TRUK, CAROLINE IS.	FED.MICRONESIA	Ċ	710/001	1988
110	VAD CADOLINE IS.	FED.MICRONESIA	č	710/011	
		FED.REP.GERMANY		740/011	1007
	SUVA	FIJI	C	742/012 190/091	1987
242	BREST	FRANCE	С	190/091	1987
202	CAYENNE, FRENCH GUIANA	FRANCE			
165	CLIPPERTON IS.	FRANCE			
	CROZET IS.	FRANCE			
131	DUMONT D'URVILLE	FRANCE			
	5 DZAOUDZI (MAYOTTE)	FRANCE	С		
	KERGUELEN IS.	FRANCE			
23	KERGUELEN IS.	FRANCE	С	912/001	1984
	LE ROBERT, MARTINIQUE		č	230/051	
205	MARSEILLE	FRANCE			
14(FRANCE		780/011	
14.	S NUUMEA. NEW CALEDONIA	FRANCE	C	740/011	1987
142	NUKU HIVA, MARQUESAS IS.	FRANCE	С	805/011	1986
1	PTE DES GALETS, REUNION IS.	FRANCE		451/001	
		FRANCE	С	808/001	1987
	ST. PAUL IS.	FRANCE			
		GHANA	С	410/016	1982
	B TEMA	GUINEA	-	•	
	5 CONAKRY			934/011	1961
	PORT-AU-PRINCE/LES GAYES	HAITI	~	611/010	
	QUARRY BAY	HONG KONG			
229	9 REYKJAVIK	ICELAND	C	010/001	1986

32 COCHIN	INDIA	C	500/081	1986
34 MADRAS	INDIA	C	500/091	1986
34 MADRAS			500/051	1000
281 MARMAGAO	INDIA		200/002	1980
29 MINICOY, LACCADIVE IS.	INDIA	С	500/091 500/065 455/011	1977
41 NICOBAR	TNDTA			
38 PORT BLAIR, ANDAMAN IS.	TNDTA		540/001 500/021	1964
JO FORT BLAIR, MUDRING IS.	INDIA	C	500/021	1983
31 VERAVAL		0	5007021	1903
35 VISHAKHAPATNAM	INDIA	С	500/101	1986
35 VISHAKHAPATNAM 68 AMBON	INDIA INDONESIA	С	590/001	1931
 35 VISHARHAPATNAM 68 AMBON 49 BENOA 291 CILACAP 50 KUPANG,TIMOR 69 MANADO (BITUNG) 45 PADANG (TELU BAYUK) 48 PELABUHAN RATU 67 SORONG 292 SURABAYA 240 CASTLETOWNSEND 239 MALIN HEAD 210 PORT ROYAL, KINGSTON 82 ABURATSU 103 CHICHIJIMA 	TNDONESTA			
	THEONECTA	C	560/121	1931
291 CILACAP	INDORESTA	C	5007121	1971
50 KUPANG, TIMOR	INDONESIA			
69 MANADO (BITUNG)	INDONESIA		580/012	
45 PADANG (TELU BAYUK)	INDONESIA		560/031	1931
A DELADITIAN DATIL	INDONESIA		560/111	
48 FELADOIAN KATO	THEORECIA		500,111	2702
67 SORONG	INDONESIA	-		
292 SURABAYA	INDONESIA	С	560/161	1931
240 CASTLETOWNSEND	IRELAND			
239 MALTN HEAD	TRELAND	С	175/011 932/011	1988
	TAMATCA	ċ	932/011	1969
210 PORT ROTAL, KINGSTON	JAMAICA	č	645/021	1000
239 MALIN HEAD 210 PORT ROYAL, KINGSTON 82 ABURATSU 103 CHICHIJIMA	JAPAN	C C	045/021	1988
103 CHICHIJIMA	JAPAN	С	648/001	
88 HAKODATE	JAPAN	С	641/031	1988
	TAPAN		642/141	
82 ABURATSU 103 CHICHIJIMA 88 HAKODATE 85 KUSHIMOTO 89 KUSHIRO 86 MEDA	TADAN		641/022	
89 KUSHIKU	JAPAN			
			642/061	1988
104 MINAMI TORT SHIMA	JAPAN	С		
83 NAGASAKI	TAPAN	С	645/064	1988
	JAPAN	č	646/024	1088
81 NAHA	JAPAN			
87 OFUNATO		C	642/022	1988
95 SYOWA	JAPAN			
8 MOMBASA	KENYA		470/001	1987
145 CANTON IS. PHOENIX IS.		C	750/012	
		č	770/022	1987
146 CHRISTMAS IS. LINE IS.	KIRIBATI	0	770/022	1007
147 FANNING IS. LINE IS.	KIRIBATI KIRIBATI KOR EA	C	770/012 730/007	1981
113 TARAWA, GILBERT IS.	KIRIBATI	С	730/007	1987
84 PUSAN	KOREA		620/046	1989
271 FORT DAUPHIN (TAOLANARO)	MADAGASCAR			
84 PUSAN 271 FORT DAUPHIN (TAOLANARO) 15 NOSY-BE	MADAGASCAR		440/002	1989
293 CENDERING/KUALA TERENGGANU			550/017	
43 PENGKALAN/TLDM/LUMUT	MALAYSIA	С	550/005	
27 GAN	MALDIVES		454/001	1963
28 MALE	MALDIVES			
110 ENIWETOK	MARSHALL IS.		720/001	1972
	MARSHALL IS.	C		
112 MAJURO			7207010	1907
252 NOUADHIBOU (CAP BLANC)	MAURITANIA	С		
16 AGALEGA	MAURITIUS	С		
18 PORT LOUIS	MAURITIUS	С	450/011	1989
19 RODRIGUES, PORT MATHURIN		С		
	MEXICO		830/081	1988
267 ACAPULCO, GRO.				
161 CABO SAN LUCAS	MEXICO		830/020	
160 ISLA GUADALUPE	MEXICO	С	830/012	1981
163 MANZANILLO,COL.	MEXICO	С	830/071	1982
213 PROGRESO, YUC.	MEXICO	С	920/001	1985
	MEXICO	с С	830/086	1986
164 PUERTO ANGEL			0001000	1050
162 SOCORRO IS.	MEXICO		830/061	
212 VERACRUZ, VER.	MEXICO	С	920/041	1985
282 TAN TAN	MOROCCO	С		
10 INHAMBANE	MOZAMBIQUE	_		
	-			
11 PEMBA	MOZAMBIQUE	-	700/01-	1007
118 SAIPAN	N.MARIANA IS.	С	/00/011	TA81
114 NAURU, GILBERT IS.	NAURU		715/001	
127 AUCKLAND-WAITEMATA HBR.	NEW ZEALAND		690/001	
132 BALLENY IS.	NEW ZEALAND			

129 BLUFF HBR. 128 CHATHAM IS. 126 KERMADEC IS. (RAOUL) 133 SCOTT IS. 101 WELLINGTON 259 LAGOS 232 BLODNOVA (BEAR ISLAND)	NEW ZEALAND	С	690/041	1989
128 CHATHAM IS.	NEW ZEALAND			
126 KERMADEC IS. (RAOUL)	NEW ZEALAND			
133 SCOTT IS.	NEW ZEALAND			
101 WELLINGTON	NEW ZEALAND	с	690/011	1989
259 LACOS	NTGERTA	č	420/003	10/1
232 BJORNOYA (BEAR ISLAND)	NODUAY	C	4207003	1941
LIL DJUMUIR (DERR IJLMU)	NORMAL			
269 BOUVETEYA (BOUVET IS.)	NORWAI	•		
275 HONNINGSVAG	NORWAY	C	040/015	1989
<pre>269 BOUVETEYA (BOUVET IS.) 275 HONNINGSVAG 230 JAN MAYEN IS. 235 MALOY 136 PETER IS. 234 RORVIK 5 MUSCAT (QABOOS PORT) 4 SALALAH 3 ADEN 304 SOCOTRA IS. 295 GWADAR 30 KARACHI, MANORO IS. 168 BALBOA 208 COCO SOLO</pre>	NORWAY		012/001	1983
235 MALOY	NORWAY	С	040/211	1989
136 PETER IS.	NORWAY			
234 RORVIK	NORWAY	С	040/136	1989
5 MUSCAT (QABOOS PORT)	OMAN			
4 SALALAH	OMAN			
3 ADEN	P.D.R. YEMEN		485/001	1969
304 SOCOTRA IS.	P.D.R. YEMEN			
295 GWADAR	PAKISTAN	С		
30 KARACHT MANORO IS	DAKTSTAN	č	490/021 840/012	1085
169 BALDOA	PARISIAN	0	9/0/021	1905
100 DALBUA	PANAFIA		840/012	1902
	PANAMA			
63 ALOTAU	PAPUA NEW GUINEA		6707006	1985
272 DARU	PAPUA NEW GUINEA	_		
65 RABAUL	PAPUA NEW GUINEA	С	670/021	1987
64 VANIMO	PAPUA NEW GUINEA			
30 KARACHI, MANORO IS. 168 BALBOA 208 COCO SOLO 63 ALOTAU 272 DARU 65 RABAUL 64 VANIMO 173 CALLAO 71 DAVAO 70 JOLO 72 LEGASPI 73 MANILA 246 CASCAIS 244 FLORES, AZORES 250 FUNCHAL, MADEIRA 245 PONTA DELGADO, AZORES 206 SAN JUAN 260 SAO TOME 253 DAKAR 14 ALDABRA 243 PORT VICTORIA HODOUL IS	PERU	С	848/032	1988
71 DAVAO	PHILLIPINES	С	660/121	1989
70 JOLO	PHILLIPINES	С	660/141	1989
72 LEGASPI	PHILLIPINES	С	660/021	1989
73 MANILA	PHILLIPINES	С	660/011	1989
246 CASCATS	PORTUGAL	С	210/021	1987
244 FLORES AZORES	PORTUGAL	С	360/041	1989
250 TINCHAI MADETRA	PORTUGAL	c	365/001	1986
210 FUNCTION TRADETRA	PORTUGAL	č	360/001	1986
245 PUNIA DELGADO, AZORES	DUEDTO DICO/USA	Ŭ	038/021	1988
206 SAN JUAN	PUERIO RICO/USA		9307021	1900
260 SAO TOME	SAU TOME/PRINCIPE		200/001	1066
253 DAKAR	SENEGAL SEYCHELLES		441/001	1077
14 ALDABRA	SEYCHELLES		441/001	1979
2/3 FORT VICTORIA, NODOCE 15:				1979
256 ABERDEEN POINT	SIERRA LEONE	С		
44 SINGAPORE	SINGAPORE		555/051	1988
66 HONIARA	SOLOMON IS.	С	734/002	1987
6 HAFUN (DANTE)	SOMALIA			
7 MOGADISHU	SOMALIA			
13 DURBAN	SOUTH AFRICA		430/091	1988
20 MARION IS.	SOUTH AFRICA			
76 PORT ELIZABETH	SOUTH AFRICA		430/088	1988
268 SIMONSTOWN	SOUTH AFRICA		430/061	1988
249 CEUTA (SPANISH N. AFRICA)		С	340/001	1964
243 LA CORUNA	SPAIN	C	340/001 200/030	1987
251 LAS PALMAS, CANARY IS.	SPAIN	č		
	SRI LANKA	Ŭ	520/001	1979
33 COLOMBO		c	050/032	
233 GOTEBORG			460/001	
9 MTWARA	TANZANIA			
297 ZANZIBAR	TANZANIA		460/016	
39 KO LAK	THAILAND		600/021	
42 KO TAPHAO NOI	THAILAND	С	600/001	1986
125 TONGATAPU	TONGA			
203 PORT OF SPAIN	TRINIDAD AND TOBAGO			
121 FUNAFUTI, ELLICE IS.	TUVALA		732/011	
263 ASCENSION	UK	С		
221 BERMUDA, ST.GEORGES IS.		С	950/011	1988
		-		
26 DINIZOLGARILA IN.			453/001	1964
26 DIEGO-GARCIA IS. 266 EDINBURGH(TRISTAN DA CUNHA)	UK	С	-	1964

188 FARADAY (ANTARCTICA)	UK		A /003	1983
248 GIBRALTAR	UK		215/001	1988
236 LERWICK	UK		170/001	1988
241 NEWLYN	UK	С	170/161	1988
296 NORTH CAICOS	UK			
306 SIGNY, SOUTH ORKNEY ILS.	UK			
187 SOUTH GEORGIA (S.ATLANTIC)	UK			
264 ST. HELENA	UK	С		
305 STANLEY, FALKLAND IS.	UK			
238 STORNOWAY		С	170/251	1988
300 MONTEVIDEO	URUGUAY		870/011	1971
302 ADAK, ALEUTIAN IS.	USA		821/003	1988
149 APRA HARBOUR, GUAM, MARIANAS	USA	С	700/001	1988
219 CAPE HATTERAS, N.C.	USA	С	960/063	1988
289 FORT PULASKI, GA.	USA	С	960/031	
107 FRENCH FRIGATE SHOALS, H.IS.	USA		760/016	1986
217 GALVESTON	USA		940/007	1988
287 HILO, HAWAII, HAW.IS.	USA		760/061	1988
108 HONOLULU, HAWAIIAN IS.	USA	С	760/031	1988
109 JOHNSTON IS. HAWAIIAN IS.	USA	С	760/011	1988
286 KAHULUI HARBOR, MAUI, HAW.IS.	USA		760/051	
216 KEY WEST	USA		940/071	
111 KWAJALEIN, MARSHALL IS.	USA	С	720/011	1988
303 MASSACRE BAY,ATTU IS.,ALASKA			820/001	1966
134 MCMURDO (ANTARCTICA)	USA		A /061 960/002	1985
218 MIAMI (HAULOVER PIER)	USA	С	960/002	1988
106 MIDWAY IS. HAWAIIAN IS.	USA	С	760/001	1988
285 NAWILIWILI, KAUAI, HAW.IS.	USA		760/021	
290 NEWPORT, RI.	USA	С	960/161	1988
74 NOME	USA			
144 PAGO PAGO, AMERICAN SAMOA	USA	С	745/001	1988
183 PALMER (ANTARCTICA)	USA			
301 PALMYRA IS., LINE IS.	USA		770/001	1957
288 PENSACOLA, FLORIDA	USA	С	940/041	1988
151 PRUDHOE BAY, ALASKA	USA			
159 SAN DIEGO	USA		823/071	
158 SAN FRANCISCO	USA		823/031	
100 SAND POINT, ALASKA	USA		821/006	1988
150 SEWARD, ALASKA	USA		821/017	1988
154 SITKA, ALASKA	USA		821/031	1988
157 SOUTH BEACH, OREGON	USA		823/016	1984
102 UNALASKA, ALEUTIAN IS.	USA		820/021	1988
220 VENTNOR (ATLANTIC CITY), N.J.	USA		960/092	1988
105 WAKE IS. MARSHALL IS.	USA		720/021	1988
231 BARENTSBURG (SPITSBERGEN)	USSR		025/001	1989
97 KALININGRAD	USSR	С	080/181	1986
91 LENINGRADSKAY (ANTARCTICA)	USSR			
25 MIRNY (ANTARCTICA)	USSR			
294 MOLODEZHNAYA (ANTARCTICA)	USSR			
274 MURMANSK	USSR	С	030/018	1989
92 NAGAEVO BAY	USSR	С	630/011	1989
270 NOVOLAZAREVSKAYA (ANTARCTIC)	USSR			
93 PETROPAVLOVSK-KAMCHATSKY	USSR	С	630/021	1989
98 PORT TUAPSE, BLACK SEA	USSR	С	300/001	1989
135 RUSSKAYA	USSR		-	
99 RUSSKAYA GAVAN	USSR	С	030/001	1989
90 YUZHNO KURILSK	USSR	С	630/001	1989
298 AVES IS.	VENEZUELA	С		
299 LA ORCHILA	VENEZUELA	С		
75 QUI NHON	VIETNAM	С		

7. Development Components

In discussing the Global Sea Level Observing System the IOC emphasized that it would require a strong TEMA component (TEMA is a Joint-Unesco-IOC activity dealing with Training, Education and Mutual Assistance in the field of ocean sciences). The IOC urged Member States to assist developing countries through TEMA and/ or bilateral and multilateral assistance mechanisms, to enable them to participate actively in GLOSS.

TEMA activities related to GLOSS include:

(i) provision of instruments and their spare parts;

(ii) assistance in selection of sites for GLOSS stations;

(iii) assistance in installation of tide gauges;

iv) assistance in training of technicians and sea level specialists;

(v) support for attendance at international seminars and meetings;

(vi) provision of documents related to GLOSS.

This assistance can be provided in 2 different ways: (i) allocations to GLOSS from voluntary contributions to the IOC Trust Fund in accordance with Rule of Procedure No. 55;¹⁸

(ii) through the IOC Voluntary Co-operation Programme (IOC-VCP).¹⁹

The co-ordination of those activities will be undertaken by the IOC Secretariat, under TEMA activities, in co-operation with the Unesco Division of Marine Sciences.

Since 1985 several countries have already provided such assistance through IOC or on bilateral/multilateral basis:

(i) the United States of America has assisted in the installation of about 20 tide gauges in the Pacific and Indian Oceans;

(ii) the United Kingdom has organized sea level training courses at Bidston Observatory annually since 1983 with the support of IOC;

(iii) the People's Republic of China organized a sea level training course in 1984, and has offered 2 tide gauges for developing countries;

(iv) Portugal is assisting Cape Verde, Saõ Tome and Principe and Mozambique in setting up their GLOSS stations;

(v) France organized in 1990 a sea level training course for French speaking countries;

(vi) Sweden has offered 10 tide gauges for developing countries;

(vii) Australia is assisting the Philippines, Malaysia, Indonesia, Singapore and Thailand in setting up sea level stations;

(viii) the Federal Republic of Germany has employed a consultant to assist in the installation and repair of tide gauges.

Such assistance is needed for many Member States especially in the IOCEA and IOCARIBE regions. Sea level training courses need to be continued, for at least the next 5 years, for English, French and Spanish speaking countries, in order to ensure proper functioning of the GLOSS stations.

Member States addressing requests for assistance in setting up GLOSS stations should give as many details as possible regarding the type of tide gauge required, detailed description of the installation site, the construction of a stilling well and recording equipment shelter, and the type of training required.

The responsibility of the recipient country includes maintenance of the GLOSS tide gauge(s), submission of sea level data for international exchange, provision of support for a foreign consultant/expert dealing with the installation of a tide gauge. This includes local transport, assisting with customs procedures for importing tide gauges, the name and address of the national agency and person responsible for local arrangements and other financial and material support to establish or reactivate a GLOSS sea level station.

Requests for assistance for the training of specialists/ technicians in sea level measurements and interpretation should be accompanied by a Curriculum Vitae of the proposed candidate and a statement of the type of training required and language used by the trainee.

Upon receipt of the request with the above details, the IOC will then address this request to the potential donor countries.

At the request of the IOC, a Manual on Sea Level Measurement and Interpretation has been prepared by the Institute of Oceanographic Sciences of the United Kingdom. It is published in English, French, Russian and Spanish. Translation of this Manual into other languages is highly desirable in order to unify the procedures for sea level measurements.¹⁶ Portugal arranged its translation into Portuguese language.

8. International Co-ordination and Management Mechanism

Operation of GLOSS as an international system requires an appropriate international mechanism (see Annex IX).

8.1 NATIONAL AND INTERNATIONAL CONTACT POINTS FOR GLOSS

The system of National Contact Point is a basic element of the international co-ordinating mechanism. The National Contact Point is designated by Member States and notified to the Secretariat in order to promote the implementation of GLOSS at a national level and to effect liaison with the IOC on all matters related to GLOSS.

The specific responsibilities of the National GLOSS Contacts are to:

(i) promote implementation of GLOSS at national level;(ii) liaise with IOC and the PSMSL on all matters related to GLOSS;

(iii) act as contact points for data requests, i.e. to link between requests for data and data products in the country;

(iv) liaise with national sea-level scientists, promote GLOSS and be aware of sea-level studies.

Regional contact points for GLOSS can be designated for liaison with the IOC Secretariat and the IOC Group on GLOSS if a regional sea level project relevant to GLOSS is established.

Regional GLOSS Co-ordinator: the Regional Coordinator should be active in sea-level studies and the Group of Experts on GLOSS should give advice to IOC Regional subsidiary bodies on suitable candidates. Continuing close collaboration must be maintained between the Group of Experts and the Regional bodies.

The specific responsibilities of GLOSS Regional Coordinators are:

(i) to liaise with PSMSL, national GLOSS Contacts and Technical Secretary;

(ii) to encourage the adoption of international standards for data within the region;

(iii) to organize yearly meetings of national GLOSS contacts;

(iv) to make regional member countries aware of the usefulness of GLOSS;

(v) to assist the GLOSS Technical Secretary in identifying national GLOSS contacts;

(vi) to maintain a correspondence file for the Region.

A GLOSS Technical Secretary, with the primary role as GLOSS Co-ordinator is located in the IOC Secretariat, at least for the initiation/implementation stage, with twoway communication with national and regional GLOSS management, and other international organizations such as IAPSO, UNEP. The specific responsibilities of the GLOSS Technical Secretary would be to:

(i) make sure nationally-committed GLOSS gauges are operational;

(ii) service needs of Group of Experts on GLOSS;

(iii) manage IOC budget for GLOSS;

(iv) act as broker for aid, organize consultant visits, donor/recipient equipment;

(v) oversee publication and distribution of any GLOSS publications.

The List of National and International Contact Points for GLOSS is shown in Annex III.

8.2 THE IOC GROUP OF EXPERTS ON GLOSS

The GLOSS Implementation Plan will need regular updating and proper co-ordination with other international research and service oriented programmes.

Initially these functions were being carried out by the IOC Task Team on GLOSS. In 1988 the IOC Executive Council²⁷ decided to establish an IOC Group of Experts on GLOSS as a subsidiary body of the IOC Committee on Ocean Processes and Climate with the following Terms of Reference:

The Group of Experts shall:

(i) advise the Committee on Ocean Processes and Climate on the implementation of the GLOSS system, at global and regional levels, based on sea level networks and related data flow and products;

(ii) update the GLOSS Implementation Plan at least every two years and formulate recommendations thereon to the IOC governing bodies;

(iii) ensure proper liaison with other international research programmes (such as TOGA, WOCE) and monitoring activities, with relevant bodies of IOC (Committee for IODE, Joint IOC-WMO Committee for IGOSS, regional subsidiary bodies of the Commission, International Co-ordination Group for ITSU, Joint SCOR-IOC CCCO), and, other international organizations concerned, such as IHO, UNEP and the IUGG, as appropriate; (iv) provide advice on the development of TEMA components of GLOSS, regarding training of specialists, provision of instruments, their installation and maintenance, and data evaluation and interpretation;

(v) advise the Committee on Ocean Processes and Climate on the gradual integration of GLOSS into a possible future global ocean observing system;

(vi) report periodically to the IOC Committee on Ocean Processes and Climate.

9. Action Plan

Member States of IOC agreeing to participate in GLOSS are required to:

(i) have all operating GLOSS stations reporting monthly mean sea level data values to the Permanent Service for Mean Sea Level (PSMSL) within one year of acquisition;
(ii) make hourly values of sea level data available for international exchange;

(iii) upgrade existing stations which are below GLOSS standards;

(iv) install new stations in consultation with the IOC Group of Experts on GLOSS;

(v) give the highest priority to the implementation of those stations in GLOSS which are required for international programmes, for example TOGA and WOCE, and to provide sea level data to the TOGA/WOCE Sea Level Centres in accordance with the requirements of those programmes;

(vi) provide assistance to other member states on a bilateral and multilateral basis. Assistance may also be provided by Member States through the IOC Voluntary Co-operation Programme thus enabling other Member States to participate in GLOSS;

(vii) keep the IOC Secretariat informed on all changes with regard to the state of GLOSS stations, data submission and National and International GLOSS Contacts.

The GLOSS Implementation Plan indicates the stations that will constitute the GLOSS network. Member States responsible for these stations have been requested, and in majority of the cases have already made a commitment, to establish fully qualified GLOSS stations. They have also expressed their commitment towards eventually establishing fully qualified GLOSS stations, where they do not already exist, and to ensure that their operation and functioning are in accordance with the provisions of the Plan.

The IOC through the Group of Experts on GLOSS and the Secretariat ensures regular review of the GLOSS development, implementation and co-ordination with other international programmes.

The IOC regional bodies are requested when developing regional sea level networks required for regional scientific and practical applications, to take into account the GLOSS requirements and to provide proper coordination with GLOSS development.

Member States having necessary logistic support are encouraged to establish and maintain GLOSS stations in Antarctica. The publication Report of the Workshop on Sea Level Measurements in Hostile Conditions¹²² provides relevant advice on suitable methods and technology for sea level measurements in hostile conditions.

The IOC Committee for IODE and the Joint IOC-WMO Committee for IGOSS are requested to assist in developing proper data management schemes and formats for GLOSS data collection, exchange and archiving.

The IOC Secretariat will prepare and distribute to national GLOSS contacts and others on a regular basis, an information bulletin on GLOSS development (GLOSS Newsletter). The GLOSS Handbook will be also prepared and regularly updated, as a comprehensive data base of information about the GLOSS stations.

Annex I

References and Bibliography

REFERENCES

- 1. Report of the Thirteenth Session of the IOC Assembly Resolution XIII-7 of the IOC Assembly.
- 2. Proposal for the Development of an IOC Global Network of Sea-Level Stations (Doc. IOC-XIII/8 Annex VI).
- Scientific Plan for the World Climate Research Programme, WCRP Publications Series No. 2, WMO/ TD-No. 6, September 1984).
- First Implementation Plan for the World Climate Research Programme WCRP Publications Series No. 5, WMO/TD-No. 80, November 1985.
- Scientific Plan for the Tropical Ocean and Global Atmosphere (TOGA) Programme. WCRP Publications Series No. 3, WMO/TD-No. 84, September 1985.
- 6. The TOGA International Implementation Plan. International TOGA Project Project Office, Boulder, Colorado, USA. Second edition 1 August 1986.
- 7. IGOSS Sea-Level Pilot Project (ISLPP) in the Pacific (Doc. IOC/WMO-IGOSS-IV, November 1985).
- 8. Operational Plan for an IGOSS Sea-Level Pilot Project (ISLPP) in the Pacific Ocean (IOC/INF-572, Paris, France, 20 February 1984).
- 9. Scientific Plan for World Ocean Circulation Experiment. WCRP Publications Series No. 6, 1986.
- 10. Catalogue of tide-gauges in the Pacific. IOC Technical Series No. 29, Unesco, 1984.
- IOC Sub-Commission for the Caribbean and Adjacent Regions, Second Session (Havana, Cuba, 8-13 December 1986). IOC Reports of Governing and Major Subsidiary Bodies, Unesco.
- 12. Report of the First Session of the IOC Regional Committee for the Central Eastern Atlantic (Praia, Cape Verde, 19-23 January 1987). IOC Reports of Governing and Major Subsidiary Bodies, Unesco.
- Report of the Fifth Session of the IOC Regional Committee for the Southern Ocean (Paris, France, 9-12 June 1987). IOC Reports of Governing and Major Subsidiary Bodies, Unesco.
- Report of the Second Session of the IOC Regional Committee for the Co-operative Investigation in the North and Central Western Indian Ocean (Arusha, Tanzania, 7-11 December 1987). IOC Reports of Governing and Major Subsidiary Bodies, Unesco.
- 15. Operational Sea-Level Stations. IOC Technical Series No. 23, Unesco, 1983.
- 16. Manual on Sea-Level Measurement and Interpretation. IOC Manuals and Guides No. 14, 1985, Unesco.
- 17. Permanent Service for Mean Sea-Level (Brochure).

- 18. IOC Manual Part I (Paris, 15 July 1982) (Second Revised Edition 15 July 1982).
- 19. Revised Rules for the Utilization of the IOC's Voluntary Assistance Programme (IOC-VCP) (IOC/INF-585, Paris, France, 12 March 1984).
- 20. Manual on International Oceanographic Data Exchange (IOC Manuals and Guides No. 9, Paris, France, 1984).
- 21. The IOC General Magnetic Tape Format for the International Exchange of Oceanographic Data (IOC Manuals and Guides No. 9, p. 1,2,3).
- 22. Physical Oceanography of the Eastern Mediterranean (POEM): A Research Programme. Unesco reports in marine science no. 35, Unesco 1985.
- Draft Global Sea-Level Observing System Implementation Plan (Doc. IOC/INF-663, Paris, 26 February 1986).
- 24. Report of the Informal Planning Meeting (WMO/ ICSU/IOC) on the World Climate Research Programme (Geneva, 12-16 May 1986).
- 25. Report of the First Session of the WMO-IOC Intergovernmental TOGA Board (Geneva, 6-9 November 1987). WCRP Special Report WMO/TD-No. 216, February 1988.
- 26. Report of the Fourteenth Session of the IOC Assembly (SC/MD/86).
- 27. Report of the Twenty-first Session of the IOC Executive Council (Paris, 7-15 March 1988). IOC Reports of Governing and Major Subsidiary Bodies, Unesco.
- 28. Data Holdings of the Permanent Service for Mean Sea-Level (Publication of PSMSL, UK, 1987).
- 29. Progress Report on the GLOSS Development (Doc. IOC/PG-OPC-II/8 Annex 3, Paris, 16 February 1987).
- Progress Report on the GLOSS Development (1986 -July 1987) (Doc. IOC/GLOSS-II/6, Paris, 27 July 1987).
- Unesco/IOC/NBO Training Course on Tidal Observations and Data Processing (Tianjin, China, 27 August-22 September 1984). IOC Training Course Reports No. 6, Unesco.
- Global Sea-Level Observing System (GLOSS) Implementation Plan, 1985-1990 (Doc. IOC/INF-663 rev., 30 October 1986).
- IOC Task Team on the Global Sea-Level Observing System (GLOSS), Second Session, Honolulu, USA, 19-23 October 1987. IOC Reports of Meetings of Experts and Equivalent Bodies, Unesco, 1988.
- Master Plan for the Tsunami Warning System in the Pacific (Doc. IOC/INF-730, Paris, 23 December 1987). IOC, Unesco.

- 35. World Ocean Circlulation Experiment Implementation Plan, Volumes I and II, WMO/TD No. 242 and 243. July 1988.
- 36. Report of the Thirteenth Session of the Scientific Steering Group for WOCE (Wormley, UK, 24-26 October 1989).
- 37. Summary Report of the Fifth Session of the Joint IOC-WMO Committee forIGOSS (Paris, 14-23 November 1988).
- Summary Report of the First Session of the IOC Group of experts on the Global Sea-Level Observing System (GLOSS) (Bidston, UK, 1923 June 1989).
- Global Sea-Level Observing System (GLOSS). Proposed Implementation Plan (Doc. IOC-XV/8 Annex 4).

BIBLIOGRAPHY

- 40. ARUR, M.G. and BASIR, F. 1981. Yearly mean sealevel trends along the Indian coast. pp. 54-61 in, Papers and proceedings of the seminar on hydrography in exclusive economic zones, demarcation and survey of its wealth potential. Calcutta: Hugli River Survey Service. 305 pp.
- 41 BARNETT, T.P. 1983a. Recent changes in sea-level and their possible causes. Climatic Change, 5, 15-38.
- 42. . 1984. The estimation of 'global' sea-level change: a problem of uniqueness. Journal of Geophysical Research, 89, 7980-7988.
- 43. BEAUMARIAGE, D.C. and SCHERER, W.D. New Technology Enhances Water Level Measurement. Sea Technology. May 1987.
- 44. BONGERS, T. and WYRTKI, K. Sea-Level at Tahiti A minimum of Variability. Journal of Physical Oceanography. Vol. 17. No. 1. January 1987.
- CARTER, W.E., ROBINSON, D.S., PYLE, T.E. and DIAMANTE, J. 1986. The application of geodetic radio interferometric surveying to the monitoring of sealevel. Geophysical Journal of the Royal Astronomical Society, 87, 3-13.
- 46. ——, SCHERER, W. and DIAMANTE, J.M. Measuring Absolute Sea-Level Sea Technology, November 1987.
- 47. CARTWRIGHT. D.E. 1974. Years of peak astronomical tides. Nature, 248, 656-657.
- 48. . 1977. Ocean tides. Reports on Progress in Physics. 40, 665-708.
- 49. ——. and CREASE, J. 1963. A comparison of the geodetic reference levels of England and France by means of the sea-surface. Proceedings of the Royal Society of London, A, 273, 558-580.
- 50. ——, ZETLER, B.D. (eds:). 1985. Pelagic tidal constants 2). (Compiled by the IAPSO Advisory Committee on Tides and Mean Sea-Level). Scientific Publication, International Association for the Physical Sciences of the Ocean, IUGG, No. 33, 59 pp.
- 51. DARWIN, G.H. 1911. The tides and kindred phenomena in the solar system, 3rd edition. London: John Murray. 437 pp.

- 52. DEMERLIAC A. 1974. Le niveau de la mer. Calcul du niveau moyen journalier. Annales Hydrographiques, 5 ser, 2, 49-57.
- 53. DIJKZEUL, J.C.M. 1984. Tide filters. Journal of Hydraulic Engineering, 110, 981-987.
- 54. DOODSON, A.T. and WARBURG, H.D. 1941. Admiralty manual of tides. London: H.M.S.O., 270 pp.
- 55. ECCLES, J. 1901. Account of the operation of the Great Trigonometrical Survey of India, XVI: Details of tidal observations, Dehra Dun: Survey of India, 152 pp.
- 56. EMERY, K.O. and AUBREY, D.G. Relative sea-level change from tide gauge records of Western North America. Journal of Geophysical Research, Vol. 91. No. B14. pp. 941-13953. December 10, 1986.
- 57. ENFIELD, D.B. and ALLEN, J.S. 1980. On the structure and dynamics of monthly sea-level anomalies along the Pacific coast of North and South America. Journal of Physical Oceanography, 10, 557-578.
- 58. FOREMAN, M.G.G. 1977. Manual for tidal heights analysis and prediction. Canadian Pacific Marine Science Report No. 77-10, 10 pp.
- 59. FORRESTER, W.D. 1983. Canadian tidal manual. Ottawa, Canada: Department of Fisheries and Oceans. 138 pp.
- FRANCO, A. dos S. 1981. Tides Fundamentals, analysis and prediction. Instituto de Pesquisas Tecnologicas do Estado de São Paulo, Publication No. 1182, 232 pp.
- 61. . and MESQUITA, A.R. On the practical use in hydrography of filtered daily values of mean sealevel. International Hydrographic Review. Monaco. LXIII (2). July 1986.
- 62. GARRETT, C.J. and TOULANY, B. 1982. Sea-level variability due to meteorological forcing in the north east Gulf of St. Lawrence. Journal of Geophysical Research, 87, 1968-1978.
- 63. GODIN, G. 1972. The analysis of tides, Liverpool University Press. 264 pp.
- 64. GRABER, P.H.F. 1980. The law of the coast in a clamshell, Part 1: Overview of an interdisciplinary approach. Shore and Beach, 48 (4), 14-20.
- 65. GREAT BRITAIN. Hydrographic Department. 1940. Atlas of tides and tidal streams, British Islands and adjacent waters (2nd edition). London: Hydrographer of the Navy, London.
- 66. Ministry of Agriculture, Fisheries and Food, Committee on Tide Gauges. 1979. Operating instructions for tide gauges on the national network. 22 pp.
- 67. HARRIS, R.A. 1897-1907. Manual of Tides. Appendices to Reports of the U.S. Coast and Geodetic Survey. Washington: Government Printing Office.
- 68. —. 1981. Tides and tidal datums in the United States. United States Army, Corps of Engineers, Coastal Engineering Research Center, Special Report No. 7, 382 pp.
- 69. HEAPS, N.S. 1983. Storm-surges, 1967-1982. Geophysical Journal of the Royal Astronomical Society, 74, 331-376.

- HICKS, S.D. 1984. Tide and current glossary. United States Department of Commerce, National Oceanic and Atmospheric Administration, National Ocean Service. 28 pp.
- 71. . 1985. Tidal datums and their uses -a summary. Shore and Beach, 53 (1), 27-32.
- 72. HOWARTH, M.J. and PUGH, D.T. 1983. Observations of tides over the continental shelf of northwest Europe, pp. 135-185 in, Physical oceanography of coastaland shelf seas (Ed. B. Johns). Amsterdam: Elsevier. 470 pp.
- 73. IAPSO 1985. Changes in relative mean sealevel. Working Party Report of the International Association for the Physical Sciences of the Ocean (Chairman: D.E. Cartwright). EOS, Transactions of the American Geophysical Union, 66, 754-756.
- 74. INTERNATIONAL HYDROGRAPHIC BUREAU. 1930. Tides, harmonic constants. International Hydrographic Bureau, Special Publication No. 26 and addenda. International Hydrographic Organization, 1974. Hydrographic dictionary, Part 1. (3rd edition), No. 32, 370 pp. and appendix. (English and French).
- 75. JARVINEN, B.R. and LAWRENCE, M.B. 1985. An evaluation of the SLOSH stormsurge model. Bulletin of the American Meteorological Society, 66, 1408-1411.
- 76. JELESNIANSKI, C.P. 1978. Storm-surges. pp. 185-192 in, Geophysical predictions. Washington D.C.: National Academy of Sciences. pp. 185-192.
- KARUNARATNE D.A. 1980. An improved method for interpolating and smoothing hourly sea-level data. International Hydrographic Review, 57, 135-148.
- LAMB, H.H. 1980. Climate fluctuations in historical times and their connection with transgressions of the sea, storm floods and other coastal changes, pp. 251-290 in, Transgressies en occupatiegeschiedennis in de Kustgebieden van Nederland en Belgie (Ed. A. Verhulst and M.K.E. Gottschalk). Belgisches Centrum voor Landelijke Geschiedenis, Pub. No. 66.
- LARSEN, L.H., CANNON, G.A. and CHOI, B.H. 1985. East China Sea tidal currents. Continental Shelf Research, 4, 77-103.
- 80. LENNON, G.W. 1971. Sea-level instrumentation, its limitations and the optimization of the performance of conventional gauges in Great Britain, International Hydrographic Review, 48 (2), 129-147.
- LOOMIS, H.G. 1978. Tsunami. pp. 155-165 in, Geophysical predictions, Washington D.C.: National Academy of Sciences. 215 pp.
- 82. LUTJEHARMS, J.R.E., STAVROPOULOS C.C. and KOLTERMAN, K.P. Tidal measurements along the Antarctic Coastline. Oceanology of the Antarctic Continental Shelf. Antarctic Research Series 43, 1985.
- 83. MACMILLAN, D.H. 1966. Tides. London: CR Books. 240 pp.
- MARCHUK, G.I. and KAGAN, B.A. 1984. Ocean tides (Mathematical models and numerical experiments). Oxford: Pergamon Press. 292 pp.

- 85. MARMER, H.A. 1926. The Tide. New York: D. Appleton and Company. 282 pp.
- MARSH, J.G., BRENNER, A.C., BECKLEY, B.D. and MARTIN, T.V. 1986. Global mean sea surface based upon the SEASAT altimeter data. Journal of Geophysical Research, 91, 3501-3506.
- MAUL, G.A. 1986. Linear correlations between Florida Current volume transport and surface speed with Miami sea-level and weather during 1964-70. Geophysical Journal of the Royal Astronomical Society, 87, 55-66.
- 88.—, and HANSON, K. Sea-level variability in the interamerican sea with concentration on Key West as a regional example. Implications of climatic changes in the wider Caribbean region. A report by the Task Team of Experts, UNEP Regional Coordinating Unit, Caribbean Environment Programme, 27 April 1988.
- MITCHUM, G.T. Computation of daily sea-level values at the TOGA Sea-Level Centre. TOGA Sea-Level Centre, University of Hawaii, 1000 Pope Road, Honolulu, HI 96822 (October 1987).
- 90. MURTY, T.S. 1984. Storm surges meteorological ocean tides. Ottawa, Canada: Department of Fisheries and Oceans. 897 pp. (Canadian Bulletin of Fisheries and Aquatic Sciences No. 212).
- 91. NEWMAN, W.S. and FAIRBRIDGE, R.W. The management of sea-level rise. Nature. Vol. 320, 27 March 1986.
- 92. PATTULLO, J.G., MUNK, W.H., REVELLE, R. and STRONG, E. 1955. The seasonal oscillation of sealevel. Journal of Marine Research, 14, 88-155.
- PELTIER, W.R., DRUMMOND, R.A. and TUSHINGHAM, A.M. 1986. Post-glacial rebound and transient lower mantle rheology. Geophysical Journal of the Royal Astronomical Society, 87, 79-116.
- 94. PILLSBURY, G.B. 1956. Tidal hydraulics, United States Army, Corps of Engineers, 247 pp.
- 95. PIRAZZOLI, P.A. Sea-level change. Nature and Resources, Vol. XXI. No. 4. Oct.-Dec. 1985.
- PLATZMAN, G.W. 1984. Normal modes of the World Ocean. Part IV: synthesis of diurnal and semidiurnal tides. Journal of Physical Oceanography, 14, 1532-1550.
- 97. USSR. Present State of the Sea-Level Researches and the Kronshtadt Tide Gauge Problem. Academy of Sciences of the USSR. Soviet Geophysical Committee Results of researches on the international geophysical problems. Moscow. 1986.
- 98. CHINA. Proceedings of the First Symposium on Ocean Tides and Sea Levels. Edited by Chinese ocean tides and se-alevel society. Published by the Institute of Marine Scientific Technological Information, State Oceanic Administration. China. 1986.
- 99. PROSHUTINSKIY, A.Y. 1988. Meteorology and Hydrology No. 2. (Meteorologia i Gidrologia No. 2). Moscow, USSR.
- 100. PUGH. D.T. 1972. The physics of pneumatic tide gauges, International Hydrographic Review, 49 (2), 71-97.
- 101. ——. 1987. Tides, surges and mean sea-level: A handbook for engineers and scientists. Chichester: John Wiley. 472 pp.

- 102. ———. and THOMPSON, K.R. 1986. The subtidal behaviour of the Celtic Sea - 1. Sea-level and bottom pressures. Continental Shelf Research, 5, 293-319.
- 103. . . . The Global Sea-Level Observing System. The Hydrographic Journal No. 45. July 1987.
- 104. ——. and VASSIE, J.M. 1980. Applications of the joint probability method for extreme sea-level computations, Proceedings of the Institution of Civil Engineers, 9, 361-372.
- 105. RAGOONADEN, S. Sea-Level Monitoring in the South-West Indian Ocean. WMO Bulletin 3, Vol. 36. July 1987.
- 106. RENERT, J.P., DONGUY, J.R., ELDIN, G. and WYRTKI, K. 1985. Relations between sea-level, thermocline depth, heat content and dynamic height in the tropical Pacific Ocean. Journal of Geophysical Research, 90, 11719-11725.
- 107. AUSTRALIA. Recommended Operating Procedures for Tide Gauges on the National Network. National Mapping Council Special Publication No. 9. Permanent Committee on Tides and Mean Sea-Level, Australia.
- 108. REDFIELD, A.C. 1980. The tides of the waters of New England and New York. Woods Hole: Oceanog-raphic Institution. 108 pp.
- 109. RPSSOTER, J.R. 1958. Note on methods of determining monthly and annual values of mean water level. International Hydrographic Review, 35, 105-115.
- 110. . 1961. A routine method of obtaining monthly and annual means of sea-level from tidal records. International Hydrographic Review, 38, 42-45.
- 111. SCHAHINER, R.B. and LENNON, G.W. The Numerical Treatment of Tidal Time Series. Flinders Institute for Atmospheric and Marine Sciences. The Flinders University of South Australia. Computing Report No. 13. ISSN0159-9372.
- 112. SCHUREMAN, P. 1976. Manual of harmonic analysis and prediction of tides. United States Government Printing Office, Washington, 317 pp. (1st edition, 1924; reprinted 1940, 1958, 1976.)
- 113. SEELING, W.N. 1977. Stilling well design for accurate water level measurement. United States Army, Coastal Engineering Research Centre, Technical Paper No. 77-2, 21 pp.
- 114. SHALOWITZ, A.L. 1962. Shore and Sea Boundaries: Vol. 1, 420 pp; Vol. 2, 749 pp. United States Department of Commerce, Coast and Geodetic Survey.
- 115. THOMPSON, K.R. 1980. An analysis of British monthly mean sea-level. Geophysical Journal of the Royal Astronomical Society, 63, 57-73.
- 116. . 1986. North Atlantic sea-level and circulation. Geophysical Journal of the Royal Astronomical Society, 87, 15-32.
- 117. —, R.O.R.Y and HAMON, B.V. 1980. Wave set-up of harbour water levels. Journal of Geophysical Research, 85, 1151-1152.
- 118. UNITED STATES. Army Corps of Engineering, Coastal Engineering Research Centre. 1984. Shore Protection Manual, 4th edition, 2 volumes.
- 119. VERSTRAETE, J.M. 1985. Contre-courants quatoriaux et variations saisonnires du contenu thermique et du

niveau moyen dans l'Atlantique tropical Est. Oceanologica Acta, 8, 249-261.

- 120. WOODWORTH, P.L. A Global Sea-Level Network: How many Gauges are enough? Tropical Ocean-Atmosphere Newsletter. October 1986.
- 121. —. 1984. The worldwide distribution of the seasonal cycle of mean sea-level. Institute of Oceanographic Sciences Report No. 190, 94 pp.
- 122. WYRTKI, K. 1979. Sea-level variations: monitoring the breath of the Pacific. EOS, Transactions of the American Geophysical Union, 60, 25-27.
- 123. . and LESLIE, W.G. 1980. The mean annual variation of sea-level in the Pacific Ocean. Hawaii Institute of Geophysics, Report HIG-80-5, 159 pp.
- 124. . 1985. Monthly maps of sea-level in the Pacific during the El Niño of 1982 and 1983. pp. 43-54, Chapter 9 in, Time series of ocean measurements, Volume 2. Intergovernmental Oceanographic Commission Technical Series No. 30, 60 pp.
- 125. ——. Water Displacements in the Pacific and the Genesis of El Niño Cycles. Journal of Geophysical Research. Vol. 90, No. C4, pp. 7129-7132, July 20, 1985.
- 126. ——. Indonesian through Flow and the Associated Pressure Gradient. Journal of Geophysical Research. Vol. 92, No. C12, pp. 12941-12946, November 1987.
- 127. IOC Report of the Workshop on Sea-Level Measurements in Hostile Conditions within the Framework of GLOSS and WOCE (Bidston Observatory, UK, 28-31 March 1988). IOC Workshop Reports No. 54.
- 128. WYRTKI, K. and NALAJARA, S. Monthly Maps of Sea-Level Anomalies in the Pacific 1975-1981. August 1984. Hawaii Institute of Geophysics, University of Hawaii, Honolulu, Hawaii 96822.
- 129. ——, CONSTANTINE, K., KILONSKY, B.J., MITCHUM, G., MIYAMOTO, B., MURPHY, T., NALAJARA, S. and CAMDWEMM, P. The Pacific Island Sea-Level Network. JIMAR Contribution No. 88-0137. Data Report No. 002, January 1988.
- 130. —, KILONSKY, B.J. and NALAJARA, S. The IGOSS Sea Level Pilot Project in the Pacific. JIMAR Contribution 88-0150. Data Report No. 003, May 1988.
- 131. A General Formatting System for Geo-Referenced Data. (IOC Manuals and Guides No. 17).
- 132. RICKARDS. L.J., Report on Sea Level Data collected during the MEDALPEX Experiment from September 1981 to September 1982. Institute of Oceanographic Sciences Report, No. 209. 1985.
- 133. WOODWORTH, P.L., N.E. SPENCER and G.A. ALCOCK. European Network of Interest in the Measurement and Analysis of Mean Sea Levels from Tide Gauge Records (Proudman Oceanographic Laboratory Report No. 7, 1989).
- 134. STEWART, R.W., B. KJERFVE, J. MILLIMAN and S.N. DWIVEDI. Relative sea-level change: a critical evaluation. Unesco Reports in Marine Science, No. 54, Unesco, 1990.
- CARTER, W.E. et al. Geodetic Fixing of Tide Gauge Bench Marks. WHOI-8931 Technical Report. CRC-89-5 Coastal Research Center, 1989.

Annex II

Intergovernmental Oceanographic Commission Questionnaire on Participation in the Global Sea-Level Observing System*

Co	untry		Date	
Oc	ean/Sea			
1.	Global Sea-Level Station			
	1.1 Name of the location			
	1.2 Geographical Co-ordinates: Lat			
	Long	····· · · · · · · · · ·		
2.	Participation in GLOSS	yes	no	
	** 2.1			
	*** 2.2			
3.	State of tide-gauge			
	3.1 Existing/in operation	yes	no	
	3.2 Need assistance	yes	no	
	3.3 Need new technology	yes	no	
4.	Type of gauge			
5.	Period of observation (from)		(to)	
6.	Method of data reduction:			
	6.1 tabulated from analogous charts			
	6.2 automatic digitization from analogous charts		·····	
	6.3 direct computer entry and editing			
7.	Data available:			
	7.1 hourly	yes	no	
	7.2 daily	yes	no	
	7.3 monthly	yes	. no	
	7.4 computer compatible (i.e. computer punched cards or magnetic tapes)	yes	. no	
8.	Means of data transmission (mail, cable, telex, radio, et	tc.)		
9.	Interest in receiving sea-level data from other countries	or PSMSL		
	9.1 Indicate the oceanic areas of interest:		· · ···· · ··· · ··· · ··· · ··· · · · ·	
10.	National Contact Point and/or National Responsible Ag	gency (name	e, address):	
		. ,	.,,,	
			· · · · · · · · · · · · · · · · · ·	

* To be filled for each sea-level station.

Please attach a map, showing location of the station.

** 2.1 Possibility to provide data on real or near-real-time basis.

*** 2.2 Participation in other international programmes (TOGA, WOCE, ISLPP, Tsunami Warning System, etc.) please indicate.

Annex III

List of National and International Contact Points for GLOSS

COUNTRY/TERR	ITORY	CONTACT POINT	COUNTRY/TERRI	TORY	CONTACT POINT
ANGOLA	Mrs. Maria de Fat Director, Centre d Maritimes Ministere des Pech LUANDA	les Recherches nes	BANGLADESH	Hydrog Biwta Ground 141-143	Hydrographer graphic Dept. Building d Floor 3 Motijheel Commercial Area
ARGENTINA	Lic. Andres Jorge Servicio de Hidrog	grafia Naval		DHAK	
	Montes de Oca 21 1271 BUENOS Al Instituto Antarctic	IRES 0 Argentino	BARBADOS	Coastal The Ga	llian Cambers I Conservation Project arrison ICHAEL
	Dir. Nacional del	Antarctico			
AUSTRALIA	Cerrito 1248 1010 BUENOS Al Dr. G.M. Homes	IRES	BRAZIL	Marinh Divisac	oria de Hidrografia e Navegacao la do Brasil o de Oceanografia, r de Mares (DHN-312)
	and Mean Sea L Canberra Operation			Rua Ba 24040 -	arao de Jaceguay s/no NITEROI, RJ
	Hydrographic Bran P.O. Box E33 QUEEN VICTOR		CAMEROON	Scier Comité	tion Générale de la Recherche ntifique et Technique National Permanent de l'Homme
	ACT 2600 Tel: (062) 525085 Tlx: AA 62230 NA	АТМАР		et de B.P. 18 YAOU	
	FAX: (062) 516800	6			
	School of Surveyin Attn: SNAP (Dr. 4 University of New P.O. Box 1 KENSINGTON 20 Tel: 6974182	Chris Rizos) South Wales	CANADA	Marine Dire 200 Ke Towe OTTA	,
	Tlx: AA 26054 FAX: +612662661			Chief,	M. Yeaton Tides Currents & Water Levels
	Prof. G.W. Lenno School of Earth Sc Flinders University BEDFORD PARI SOUTH AUSTRA Tel: (08) 275.2298	viences y of South Australia X ALIA 5042		Dept. o Room OTTA	an Hydrographic Service of Fisheries & Oceans 241, 615 Booth Street WA RIO K1A 0E6
	Tlx: 89624 FLIND FAX: (08) 2752676	U AA 5	CAPE VERDE	B.P . 7	ao Geral da Marinha e Portos /ICENTE
BAHAMAS (IOCARIBE)	Dr. George A. Ma NOAA Atlantic O Meteorological I 4301 Rickenbacker MIAMI FLORIDA 33149 USA	ceanographic and Laboratory	CHILE	Casilla VALP Tel: 25	or to Hidrografico de la Armada 324 ARAISO

COUNTRY/TERRITORY CONTACT POINT

COUNTRY/TERRITORY CONTACT POINT

CHINA, PEOPLE'S REP. OF	Department of Marine Monitoring and Forecast State Oceanic Administration 1 Fuxingmenwai Avenue BEIJING National Oceanographic Data Centre 118 Qi Wei Road, Hedong District, TIANJIN P.O. Box 74 TIANJIN	DENMARK	Det Danske Meteorological Institut Lyngbyvej 100 DK - 2100 KOBENHAVN O Tel: 01-292-100 Tlx: 27138 METIN DK FAX: 451271080 The Royal Danish Administration of Navigation and Hydrography Nautical Division Esplanaden 19
COLOMBIA	 Mr. Jorge Ivan Valencia Franco Subdirector de Estudios e Investigaciones Instituto Colombiano de Hidrologia, Meteorologia y Adecuacion de Tierras (HIMAT) Apartado Aereo No. 20032 BOGOTA D.E. Tlx: 44345 HIMAT FAX: 57-2842402 	ECUADOR	1263 COPENHAGEN K Dr. O. Bedsted Andersen Geodaestik Institut Geodaestik Afdeling l Gamelehave Alle 22 290 CHARLOTTENLUND Director Instituto Oceanografico de la Armada
CONGO	Mr. M.F. Guerdat Directeur Centre ORSTOM POINTE-NOIRE Centre de Recherches Océanographiques B.P. 1286 POINTE-NOIRE	EGYPT	Departamento Ciencias del Mar Casilla 5940 GUAYAQUIL The Director Institute of Oceanography and Fisheries Academy of Scientific Research and Technology
COSTA RICA	Instituto Geografico Nacional Apartado 2272 SAN JOSE Ing. Jorge E. Coen Universidad Nacional, Departamento de Fisica Apartado 86 HEREDIA	FIJI	101 Kasr El-Ainy Street CAIRO The Director Suez Canal Research Center Suez Canal Authority ISMAILIA Mr. J. Kotobalavu Secretary of Foreign Affairs
COTE D'IVOIRE	Centre de Recherches Océanographiques ORSTOM 29, rue des Pêcheurs B.P. V-18 ABIDJAN Département des Sciences de la Terre Université National B.P. 322 ABIDJAN	FRANCE	Department of Foreign Affairs Prime Minister's Office SUVA Direction du Service Hydrographique et Océanographique de la Marine (EPSHOM) Etablissement Principal B.P. 426 13 rue du Chatellier 29275 BREST CEDEX Tlx: 940568 HYDRO BREST
CUBA	Instituto de Oceanologia Ave. Ira. 18406 Rpto. Flores Municipio Playa CIUDAD DE LA HABANA		Dr. Christian Le Provost Directeur de Recherche au C.N.R.S. Institut de Mécanique de Grenoble Domaine Universitaire B.P. N° 53X 38041 GRENOBLE CEDEX
DEMOCRATIC PEOPLE'S REPUBLIC OF KOREA	 Mr. Jong Dek San Korean National Oceanographic Data Centre of Hydrometeorological Service of DPR of Korea P.O. Box 100 PYONGYANG 		Tel: (33) 76.82.50.00 Tlx: 980668 HYMEGRE F FAX: (33) 76.82.50.01 Dr. M. Fieux Laboratoire d'Océanographie Physique 43, rue Cuvier 75231 PARIS CEDEX 05

COUNTRY/TERRITORY CONTACT POINT

COUNTRY/TERRITORY CONTACT POINT

	Territoire des Terres Australes et Antarctiques Françaises (TAAF) 34 rue des Renaudes 75017 PARIS Tel: 47.66.93.43	HONG KONG	The Director Royal Observatory 134A Nathan Road KOWLOON
	Le Directeur ORSTOM 213 rue La Fayette 75480 PARIS CEDEX 10	ICELAND	Mr. G. Bergsteinsson Iceland Hydrographic Service Rostholf 7094, 127 REYKJAVIK
	 Mr. C. Boucher Institut Géographique National Service de Géodesie, Nivellement et Météorologie 2 avenue Pasteur 94160 SAINT-MANDE Tel: (1) 43.74.12.15 	INDIA	The Director Geodetic and Research Branch Survey of India 17 E.C. Road DEHRA DUN 248001 Secretary, Department of Ocean Development
GERMANY, FED. REP. OF	Dr. E. Pansch Deutsches Hydrographisches Institîut Section M13 Postfach 301220 D-2000 HAMBURG 36 Tel: (040) 3190 452 or 3190 1		 Attn. Dr. Yash Pal, Secretary, Dept. of Science and Technology Mahasagar Bharan, Block 12 CGO Complex Lodi Road NEW DELHI 110003
	Tlx: 0211 138 BMVHH D FAX: (040) 3190-5150	INDONESIA	Indonesian Hydro-Oceanographic Service Center for Oceanographic Research & Development
	Dr. G. Giermann Alfred-Wegener-Institute for Polar and Marine Research Postfach 120161		Jalan Pasir Putih 1 Ancol Timur JAKARTA 1442
GHANA	Columbusstrasse D-2850 BREMERHAVEN Dr. I. Abu		National Mapping Agency Bakosurtanal, km 46 Jl. Raya Jakarta-Bogor
OIIANA	Director Survey Department P.O. Box 191, Cantonments ACCRA	IRELAND	Cibinong BOGOR Cmdt. M.C. Walsh Oifigna Suirbhreachta Ordanais
GREECE	Hellenic Navy Command Hydrographic Service ATHENS TGN 1040		Pairc au Fhionnuisce Baile Atha Cliath DUBLIN Tel: 01-213171 or 210121
GUATEMALA	Ing. Estuardo Velasquez V. Director General Instituto Nacional de Sismologia, Vulcanologia, Meteorologia e Hidrologia 70 Avenida 14-57 Zona 13 GUATEMALA, C.A.		Tlx: 30126 Tlg: Ordsur Dublin Ocean Services Section EOLAS The Irish Science & Technology Agency Glasnevin DUBLIN 9 Tel: 01-370101
GUINEA	Dr. S. Konate Directeur, Centre de Recherches Scientifiques de Conakry-Rogbané B.P. 561	ITALY	Tlx: 32501 FAX: 379620 Dr. C. Lusetti
	Rogbané CONAKRY		Istituto Idrografico della Marine Passo Observatorio, 4 16 134 GENOVA
HAITI	Mr. Emmanuel Brog Secrétaire d'Etat des Finances et des Affaires Economiques Palais des Finances PORT-AU-PRINCE		Tel: 265 451 Tlx: 270435 MARIDRI

COUNTRY/TERRITORY CONTACT POINT		COUNTRY/TERRITORY CONTACT POINT			
JAMAICA	The Director	MEXICO	Vice-Admiral Gilberto Lopez Lira		
	Survey Department		Secretaria de Marina		
	P.O. Box 493		Direccion General de Oceanografia		
	KINGSTON		Jefatura Xll-100 - RAC-342/86		
			MEXICO, D.F.		
JAPAN	Dr. Ryozo Tatehira				
	Director, Marine Department	MOZAMBIQUE	Mr. Sesaluxo Emilio N. Gaveta		
	Japan Meteorological Agency		Director, the National Service of		
	3-4 Otemachi-l		Navigation Hydrology and Buoyage		
	Chiyoda-ku TOKYO 100		ΜΑΡυτο		
			Mrs. Lidia Po		
	Iwao Noguchi		Director		
	The Director		Instituto de Investagacao Pesqueira		
	Ocean Surveys Division		PO Box 4603		
	Hydrographic Department		MAPUTO		
	Maritime Safety Agency				
	5-3-1 Tsukiji, Chuo-ku	MOROCCO	Dr. Mohammed Rami		
	ТОКҮО 104		Le Directeur		
	Tel: (03) 541-3811		Institut Scientifique des Pêches Maritimes		
	Tlx: 0252 2452 HDJODC J		2 rue Tiznit, B.P. 21		
			CASABLANCA		
KENYA	Mr. M.O. Odido		Tel: 222090		
	Kenya Marine and Fisheries Research		Tlx: 23823 M		
	Institute		FAX: 266967		
	Mombasa Laboratory				
	P.O. Box 81651	NEW	The Tidal Officer		
	MOMBASA	ZEALAND	Royal New Zealand Navy		
			Hydrographic Office		
MADAGASCAR	Le Directeur		P.O. Box 33-341		
	Centre National de Recherches		TAKAPUNA		
	Océanographiques				
	B.P. 68	NIGERIA	The Director		
	207 NOSY-BE		Nigerian Institute for Oceanography		
	Tel: 613-73		and Marine Research (NIOMR)		
	Tlg: OCEAN NOSYBE		Victoria Island		
	C		P.M.B. 12729		
MALAYSIA	Director of Mapping		LAGOS		
	Direktorat Pemetaan Negara				
	Bangunan Ukur	NORWAY	Norges Sjokartverk		
	Jalan Gurney		Klubbgt l		
	50578 KUALA LUMPUR		Postboks 60		
			4001 STAVANGER		
	Hydrographic Directorate		Tel: (04) 53 21 60		
	Department of Navy		Tlx: 73 689 NSKV N		
	Ministry of Defence		FAX: (04) 52 78 72		
	Jalan Padnag Tembak				
	50634 KUALA LUMPUR		Norwegian Polar Research Institute		
	Tel: KL 2921333 or 2353075		Post Office Box 158		
	Tlx: KEMTAH MA 30289		1330 OSLO LUFTHAVN		
MAURITANIA	Dr. M. Ba				
MAUKITANIA	Dr. M. Ba		Statens Kartverk		
	Directeur, Centre National de la		Geodesidivisjonen		
	Recherche Océanographique des		Monserudveien		
	Pêches (C.N.R.O.P.)		3500 HONEFOSS		
	B.P. 22				
	NOUADHIBOU Tal: 45124 ar 40025		Geophysics Institute		
	Tel: 45124 or 49035		University of Bergen		
	Tlx: 415 CNROP		St. Alle Gaten 70, New Line		
			N-5007 BERGEN		
MAURITIUS	Meteorological Services Headquarters		Tel: 05-226200		
	VACOAS				
	Tel: 861031		Norsk Oseanografisk Komite		
	Tlx: 4722 METEO IW		Sandakerveien 90		
	Tlg: METEO MAURITIUS		N-0483 OSLO 4		

COUNTRY/TERRITORY CONTACT POINT		ONTACT POINT	COUNTRY/TERRITORY CONTACT POINT			
OMAN	P.O. Box MUSCAT Tel: 74006		ELSALVADOR	Institut Ingenie Aparta	Director General to Geografico Nacional ero Pablo Arnoldo Guzman ido Postal No. 247 ALVADOR	
	and Wat P.O. Box 3 RUWI	Conservation of Environment er Resources 5310 14 or 704 346	AMERICAN SAMOA	Marine	ry of Transport e and Shipping Division Fox 1607	
PAKISTAN		ENVRMNT ON	SAO TOME AND PRINCIPE	das I	ria de Estado Pescas CHAVES	
	Director, National In 37-K, Bloc KARACH Tel: 43 43 Tlx: 24681	nstitute of Oceanography k 6, P.E.C.H.S. I 29 08	SENEGAL	Mr. Di Coordi Envi Centre de D B.P. 22	afara Toure nateur du Programme ronnement de Recherches Océanographiques akar Thiaroye (CRODT) 241	
PANAMA, REPUBLIC OF	Dr. Epiner Research I Departmer		SEYCHELLES		R 05 34 or 34 05 36 y of National Development	
	Direccion Apartado PANAMA	General de Recursos Marinos 3318 4		Dept. o P.O. Be Indeper	of Lands, Planning and Survey	
					a	
PAPUA NEW GUINEA	Departmen Civil Av Hydrograp Marine Di P.O. Box KONEDO	hic Section vision 457	SIERRA LEONE	and (Furah I	ite of Marine Biology Oceanography Bay College sity of Sierra Leone FOWN	
PERU	Director Direccion de la Ma	00 Chucuito	SINGAPORE	Hydrog Port of 7 Kepp Tanjon SINGA	lson Chua grapher Singapore Authority el Road 02-28 g Pagar Complex PORE 0208 Bugotu	
PHILIPPINES	Conrado N	Coast and Geodetic Survey	ISLANDS	Perman Ministr and I	nent Secretary y of Foreign Affairs International Trade ox G.10	
PORTUGAL	Technical l Instituto H	idrografico inas 49-P-1296	SOMALIA	P.O. B MOGA	DISHU	
REPUBLIC OF KOREA		lydrographic Affairs		The Ge Somali P.O. Be MOGA	amed Hagi Ali Adani eneral Manager Ports Authority ox 935 DISHU 9 611 SSAMOG SM	

COUNTRY/TERRITORY CONTACT POINT

COUNTRY/TERRITORY CONTACT POINT

SPAIN	Mr. Garcia Moron Servicio de Mareas Instituto Espanol de Oceanografia (IEO) Avenida de Brasil, 31 28020 MADRID Tel: 597-44-43 Tlx: 44460 IEOD E		Director, All-Union Research Institute of Hydrometeorological Information World Data Centre 6 Korolev Street OBNINSK, KALUZHSKAYA OBLAST 249020 Tlx: 412633 INFOR SU
	D.F. Fernandez Diaz Seccion de Datos Oceanograficos Instituto Espanol de Oceanografia Avenida de Brasil, 31 28020 MADRID Tel: 597-44-43 Tlx: 44460 IEOD E		Arctic and Antarctic Research Institute 38 Bering Street LENINGRAD 199226 Tel: 352-03-19 Tlx: 121423 NILAS SU FAX: (812) 352.26.88
SRI LANKA	Mr. S.R. Amarasinghe Director, Coastal Conservation Coast Conservation Dept. Maligawatta Secretariat COLOMBO 10 Dr. H.V. Dayananda Chief Engineer (Research) Tilak Ekanayake Sri Lanka Ports Authority COLOMBO 1	UNITED	Dr. P. Agafonov Secretary Oceanographic Committee of the Soviet Union 11 Gorky Street MOSCOW 103009 Tel: 229.25.72 Tlx: 411241 SU Tlg: MOSCOW OCEAN Mr. G.A. Alcock
SWEDEN	Swedish Meterological and Hydrological Institute Folkborgsvagen 1 S-60176 NORRKOPING Tel: +4611 1580 00 Tlx: 64400 SMHI S	KINGDOM OF GREAT BRITAIN & NORTHERN IRELAND	Proudman Oceanographic Laboratory Bidston Observatory Birkenhead, MERSEYSIDE L43 7RA Tel: 051 653 86 33 Tlx: 628591 OCEAN G Fax: 051 653 62 69
TANZANIA	FAX: 170207 or 170208 Haji Adam Haji Director Department of Lands and Surveys P.O. Box 811 ZANZIBAR		Dr. David T. Pugh Institute of Oceanographic Sciences Brook Road WORMLEY Godalming, SURREY GU8 5UB Tel: (428) 79 41 41 Tlx: 858833 OCEANS G Tlm: D.PUGH FAX: (428) 79 30 66
THAILAND	Hydrographic Department Royal Thai Navy BANGKOK 10600	UNITED STATES	Prof. Klaus Wyrtki University of Hawaii at Manoa
TRINIDAD AND TOBAGO	Mr. Francis L. Charles Head Trinidad and Tobago Hydrographic Unit P.O. Box 1104 PORT-OF-SPAIN	OF AMERICA	Department of Oceanography 1000 Pope Road MSB 307 HONOLULU, HAWAII 96822 Tel: (808) 948.76.33 Tlx: 650 2478678 Tlm: K.WYRTKI
TURKEY	Harita Genel Komutanligi Geodezi Daires Dikimevi ANKARA		Dr. Bruce C. Douglas Chief, Geodetic Research and Development Laboratory NOAA/National Ocean Service Room 424
UNION OF SOVIET SOCIALIST REPUBLICS	 Mr. B. Himich USSR State Committee for Hydrometeorology 12 P. Morozov Street MOSCOW 123376 Tlx: 411117 RUMS SU 		11400 Rockville Pike ROCKVILLE, MD 20852 USA Tel: (301) 320.31.45 Fax: 301.468.57.14 Tlm: NOAA.GEOSAT

COUNTRY/TERRITORY CONTACT POINT COUNTRY/TERRITORY CONTACT POINT URUGUAY Jorge di Lorenzi Hydrometeorological Service Servicio de Oceanografia, Hidrografia, No. 4 Dang Thai Than St. Meteorlogia de la Armada HANOI Capurro 980 MÓNTEVIDEO Département Général de la Météorologie Tong cue Khi tuong Thuy van Instituto Oceanografico de Venezuela VENEZUELA HANOI Universidad de Oriente Apartado de Correos 245 YEMEN, Mr. A. Hammadi **CUMANA REPUBLIC OF** Director Tlx: 93152 UDONS VE Marine Science and Resources **Research** Centre Capitan Jesus E. Moretti-Russian Ministry of Fish Wealth Direccion de Hidrografia y Navigacion P.O. Box 1242 Apartado Postal 6745 ADEN CARACAS YUGOSLAVIA Institute of Oceanography and Fisheries P.O. Box 114 VIET NAM Mr. Dang Ngoc Thann 58001 SPLIT Centre National de Recherches Scientifiques du Viet Nam HO CHI MINH CITY

INTERNATIONAL CONTACTS

Permanent Service for Mean Sea Level (PSMSL) Director, PSMSL	Dr. P. Woodworth Bidston Observatory Birkenhead, MERSEYSIDE L43 7RA United Kingdom Tel: 051-6538633 Tlx: 628591 OCEAN G Tlm: PSMSL.POL	TOGA Sea Level Center WOCE Sea Level Data Assembly Center	Prof. K. Wyrtki Director (same address as above) Prof. K. Wyrtki (DAC) (same address as above)
WOCE Sea Level Data Assembly Center(DAC)	Dr. M. Jones Director, British Oceanographic Data Center Bidston Observatory Birkenhead, MERSEYSIDE L43 7RA United Kingdom Tel: 0516538633 Tlx: 628591 OCEAN G Tlm: BODC.UK Fax: 0516536269	Specialized Oceanographic Center for the IGOSS Sea-Level Pilot Project in the North and Tropical Atlantic	Dr. A. Bolduc MEDS Department of Fisheries & Oceans 200 Kent Street Ottawa, ONTARIO K1A OE6 Canada Tel: 613-990.02.97 Tlx: 534228 Tlm: A.BOLDUC Fax: 6139906050
Specialized Oceanographic Center for the IGOSS Sea-Level Programme in the Pacific	Prof. K. Wyrtki Director University of Hawaii 1000 Pope Road Honolulu, HAWAII 96822 United States of America Tel: (808) 948 76.33 Tlx: 650-2478678 Tlm: K.WYRTKI	International Hydrographic Organization	IHO 7, avenue Président J.F. Kennedy B.P. 445 MC 98011 Monaco Cedex Principauté de Monaco Tel: (33) 93.50.65.87 Tlx: 479164 MC-INHORG

IGOSS Pilot Project on Altimetric Sea-Surface Topography Data	The Project Manager Dr. Robert E. Cheney Office of Charting and Geodetic Services National Ocean Service, NOAA N/CG1, Room 426A, Rockwall Bldg. Rockville, MD 20852 United States of America Tel: 3014438556	IOCINCWIO	Mr. Mika Odido Regional Co-ordinator Kenya Marine and Fisheries Research Institute P.O. Box 81651 MOMBASA Kenya Tel: Mombasa 471366 Tlx: 21115
IOCARIBE	 Tlm: NOAA.GEOSAT Dr. George A. Maul NOAA Atlantic Oceanographic and Meteorological Laboratory 4301 Rickenbacker Causeway MIAMI, FL 33149 United States of America 	Intergovernmental Oceanographic Commission (IOC)	Dr. A. Tolkachev Senior Assistant Secretary SC/IOC Unesco 1 rue Miollis 75015 PARIS France Tel: (1) 45.68.39.78 Tlx: 204461F Paris
IOCEA	Dr. S. Konate Directeur Centre de Recherches Scientifiques de Conakry-Rogbané B.P. 561 Rogbané, CONAKRY Guinea		Tlm: IOC.SECRETARIAT Fax: 33 (1) 40 56 93 16

-

.

Annex IV

Other Programmes with Sea-Level Components

THE PACIFIC OCEAN

The IOC Tsunami Warning System in the Pacific combines selected sea-level gauges from several countries into an ocean-wide network for the dedicated purpose of detecting tsunamis: once a seismic event is indicated, sea-level stations are interrogated to determine whether a tsunami has been generated, and if so, warnings are issued to areas at risk. Stations in this system are also capable of providing regular sea-level records for other applications if the records are suitably reduced. The Catalogue of tide-gauges in the Pacific¹⁰ provides a list of sources of tidal data which can be used in postevent studies of tsunamis and in other branches of oceanographic study (Figure 1).

IGOSS SEA-LEVEL PROGRAMME IN THE PACIFIC

In 1984, an IGOSS Sea-Level Pilot Project in the Pacific (ISLPP) was launched. The purpose of the ISLPP is to make monthly mean sea-level data available to users in a

timely fashion and to generate products which are valuable for scientific analysis of climate related ocean processes. Sea-level data from 78 stations in the Pacific are provided on a regular (monthly) basis to an IGOSS Specialized Oceanographic Centre (SOC) at the University of Hawaii at Manoa. Since 1984, the SOC for ISLPP has produced and widely distributed maps of monthly mean sea-level anomaly charts (Figure 2) and since 1988 maps of sea-level corrected for atmospheric pressure (Figure 3). The SOC also prepares an index of upper layer volume for the equatorial Pacific Ocean at quarterly intervals (Figure 4). The data from the 78 sealevel stations participating in ISLPP are available for the years 1974 to 1986 on magnetic tape to interested parties. They are also part of the data archive of the TOGA Sea-Level Centre. 119, 123

In 1989, the IOC-WMO Committee at its fifth session recommended that the Pilot Project become a permanent operational programme of IGOSS under the title IGOSS Sea-Level Programme in the Pacific (ISLP/PAC.).

Samples of sea-level products issued by the SOC for ISLP/PAC are shown on the following pages (Figures 2, 3, 4).

Figure 1. Location of Tsunami Warning System network and the tide network in the Pacific (by N.M. Ridgway).

Figure 2. Deviation of sea level from the 1975 to 1986 mean sea level.

Figure 3. Anomaly of sea level from the 1975 to 1986 mean JANUARY sea level adjusted for atmospheric pressure.

Figure 4. Upper layer volume in the tropical Pacific between 15° N and 15° S in 10^{14} m³ relative to its mean value of about 70 x 10^{14} m³. The annual cycle is not removed (see Journal of Geophysical Research, v. 90, p. 7129-7132).

Figure 5. Proposed IOCARIBE Network of Sea-Level stations.

INTEGRATED GLOBAL OCEAN SERVICES SYSTEM (IGOSS) IGOSS SEA-LEVEL PROGRAMME (ISLP) SPECIALIZED OCEANOGRAPHIC CENTER (SOC) FOR MEAN SEA-LEVEL IN THE PACIFIC (Text of Figures 2, 3, 4)

Sea-Level, January 1990

A region of lower than average sea level persists from the Philippines eastward to Wake Island and northward to Naha. Higher than average sea level is found in most of the equatorial and southern Pacific. This region extends from New Guinea to Johnston Island to Easter Island to New Zealand and northern Australia. Maximum deviations are found at Noumea (17 cm) and at Tarawa (13 cm).

Sea level is above average at Singapore and along the southern coast of China. Negative sea level deviations are found along northern China and in the Yellow Sea. Sea level deviations are small along the coast of Japan.

Sea level is higher than average in the northern Pacific from Japan to California. The maximum deviations are found on the Kamchatka peninsula (16 cm) and in the Aleutians (12 cm).

Sea level is slightly below average over most of the coast from Baja California to Chile. Sea level is above average in the Galapagos and at La Libertad. Sea level at most of these stations has risen by about 10 cm since last month.

Anomaly of sea-level corrected for atmospheric pressure, January 1990

The sea level anomalies from the Philippines to Saipan and in the western equatorial Pacific are near normal after correcting for the mean annual cycle. The pattern of pressure-corrected sea level anomalies in the central and southern Pacific is similar to the pattern of sea level deviations with the exception of a region of slightly negative anomalies from Kanton to Nuku Hiva.

Positive anomalies are found at Singapore and along the coast of China. This region is positive pressurecorrected sea level anomalies extends to the Yellow Sea and along the coast of Japan. Negative anomalies are found at Hawaii and in the Aleutians. Atmospheric pressure anomalies are significant at these stations.

Sea level anomalies are predominantly negative from Alaska to Baja California. Positive anomalies are found from Mexico to La Libertad and in the Galapagos. The pressure-corrected anomalies are negative along the coast of Chile with the exception of Talcahuano.

Data to this map were contributed by: Australia, Belau, Canada, Chile, Colomoia, Cook Islands, Ecuador, Federated States of Micronesia, French Polynesia, Hong Kong, Japan, Kiribati, Korea, Marshall Islands, Mexico, Nauru, New Caledonia, New Zealand, Northern Mariana Islands, Papua New Guinea, People's Republic of China, Peru, Philippines, Singapore, Solomon Islands, Tuvalu, Union of Soviet Socialist Republics, and United States of America. 72 stations reported monthly mean sea-level.

Dr. Klaus Wyrtki and Dr. Gary T. Mitchum Department of Oceanography University of Hawaii at Manoa 1000 Pope Road MSB 307 Honolulu, Hawaii 96822 USA

THE INDIAN OCEAN

The proposal for the establishment of a tide-gauge network in the Indian Ocean as a part of the Global Network was considered by the IOC-Unesco Workshop on Regional Co-operation in Marine Science in the Central Indian Ocean and Adjacent Seas and Gulfs (Colombo, Sri Lanka, 8-13 July 1985).

The IOC Regional Committee for the Co-operative Investigation in the North and Central Western Indian Ocean (IOCINCWIO), at its Second Session (Arusha, Tanzania, 7-11 December 1987), adopted the proposal for the implementation of the regional component of GLOSS, urged its Member States to participate fully in GLOSS and agreed to establish an IOCINCWIO Regional Co-ordinator for GLOSS.¹⁴

THE ATLANTIC OCEAN

The IOC Regional Committee for the Central Eastern Atlantic at its First Session (Praia, Cape Verde, 19-23 January 1987) adopted the regional component of GLOSS, urged Member States of the region to participate actively in its implementation and recommended the establishment of a Task Team on the IOCEA regional component of GLOSS.¹² The establishment of the network of sea-level stations in the Caribbean Sea and Adjacent regions was discussed at the IOCARIBE Workshop on Physical Oceanography and Climate (1986) and at the Second Session of the IOC Sub-Commission for the Caribbean and Adjacent Regions (Havana, Cuba, 8-13 December 1986).¹¹ A proposed IOCARIBE network of sea-level stations is shown in Figure 5.

The IOC Executive Council at its Twenty-first Session (Paris, 7-15 March 1988) approved the IGOSS Sea-Level Pilot Project for the North and Tropical Atlantic (ISLPP/NTA) (30° S). The ISLPP/NTA Project will undertake to acquire on a monthly basis the monthly mean sea level data from GLOSS sea level stations located around and in the North and Tropical Atlantic Basin in order to obtain a monthly synoptic data set of mean sea levels from which monthly Mean Sea Level Charts will be produced and disseminated. The mean sea level data will be received, processed and quality controlled at the ISLPP/NTA Data Centre (Marine Environmental Data Service, Ottawa), the Canadian National Oceanographic Data Centre. The description of the Project is given in Annex VII of the Summary Report of the Fifth Session of the Joint IOC-WMO Committee for IGOSS.³⁷

Figure 6. MEDALPEX Sea-Level Sites.

Figure 7. Tropical Atlantic Time Series Measurements.

The United Kingdom National Oceanographic Data Centre on behalf of PSMSL, fulfilled the role of the Responsible National Oceanographic Data Centre for the MEDALPEX Sea-Level Data Set and prepared the complete sea-level data set for sea-level sites (Figure 6) the Northern part of the Western Mediterranean Sea. The set of data on the magnetic tape may be obtained from WDCA and WDCB (Oceanography) and MIAS (Bidston, UK).¹²⁷

In the Tropical Atlantic, ORSTOM (France) since 1982 undertakes studies of seasonal and interannual sealevel changes initiated within the framework of FOCAL/ SEQUAL programme (1982-1984) and continued after 1984 in support of TOGA programme with the use of network of pressure type tide gauges (Figure 7).¹¹⁴

THE SOUTHERN OCEAN

The proposals for the establishment of the sea-level observation network in the Southern Ocean were made by the IOC Regional Committee for the Southern Ocean at its Fourth Session (1983), by SCOR WG-74 (1985) and the IOC Regional Committee for SOC at its Fifth Session (Paris, 9-12 June 1987).¹³

The problem of sea-level measurements in such hostile conditions as Antarctica was discussed at the Ad hoc meeting of the Group of Experts on Sea-Level Measurements in Hostile Conditions within the framework of GLOSS and WOCE (Bidston Observatory, Birkenhead, UK, 28-31 March 1988).¹²²

The principle conclusions of the meeting were:

(i) technology exists and is affordable to make sea level measurements in hostile regions;

(ii) technology and techniques must be site specific;

(iii) bench mark connections are mandatory at the applicable stateoftheart;

(iv) atmospheric pressure measurements are mandatory at the applicable state-of-the-art;

(v) real time transmission is required to ensure proper operation and early availability of the data to the user community;

(vi) since the availability of global reference systems has increased (VLBI/GPS), local reference systems can be tied into the global systems to improve the quality of the sea level measurements;

(vii) bench marks themselves have to meet technical requirements for the site in view of permafrost disturbances and other local hazards.

IGOSS PILOT PROJECT ON ALTIMETRIC SEA-SURFACE TOPOGRAPHY DATA

The Joint IOC-WMO Committee for IGOSS, at its Fifth session (Paris, 14-23 November 1988), adopted the proposal of the USA to initiate an IGOSS Pilot Project on Altimetric Sea-Surface Topography Data in order to evaluate the fidelity of sea-level changes derived from satellite altimeter measurements.³⁷

Products available will be maps depicting monthly departures of sea level from a long-term mean sea level, derived by analysis of satellite altimetry measurements. These maps will cover the Atlantic, Pacific and Indian Oceans from 30° S to 30° N.

Description

Launched in 1985, the U.S. Navy's Geodetic Satellite (GEOSAT) has become the most successful satellite mission ever flown for oceanography. Approximately 500,000 observations of sea level, wind speed and wave height are collected each day over the global oceans. Under agreement with the U.S. Navy, the National Ocean Service of NOAA produces the GEOSAT Geophysical Data Records (GDRs) in Rockville by combining the raw measurements with a precise orbit, a tide model, and radar path length corrections for delays due to troposphere and ionosphere. GDR's are distributed to the public by NOAA each month and reach the user within 2-3 months of acquisition, remarkably fast turnaround for a global satellite data set. Nearly 40 institutions around the world have purchased subscriptions to the NOAA GEOSAT data, and it is anticipated that the mission will continue for several more years, perhaps into the 1990's.

In addition to processing the data for public distribution, NOAA is analyzing the GEOSAT data to observe global sea level variability. These data have already been shown to be of enormous value in the study of ocean dynamics, particularly in the tropical oceans. At NOAA, the GEOSAT data are being used to measure sea level change as a function of time, in much the same way that island tide gauge data are used (Figure 8). During the recent 1986-87 El Niño event, NOAA was able to monitor sea level changes throughout the tropical Pacific in nearreal time, the first time this had been accomplished. An operational sea level bulletin for the tropical Pacific, Atlantic, and Indian Oceans is now produced on a monthly basis and distributed to users worldwide through NOAA's Climate Diagnostics Bulletin.

Products

GEOSAT sea level time series are generated on a uniform grid, 2 degrees longitude by 1 degree latitude. For mapping purposes, data are expressed in terms of anomalies from a common 1-year mean. In the Pacific, the 1-year period (April 1985-86) is used as a reference, whereas in the Indian and Atlantic Oceans, anomalies are expressed relative to the 1-year period (August 1987-88). The maps are computed each month and are available for distribution by the ninth day of the following month. Product example is shown under Figure 9.

Data Tapes

The GEOSAT Geophysical Data Records are archived and disseminated by three U.S. data centres. GEOSAT data are managed by the National Oceanographic Data Centre; the land/ice data are managed jointly by the National Geophysical Data Centre and the National Snow and Ice Data Centre. To encourage multidisciplinary use of the data, the centres provide data services,

Figure 8. Sea level at Majuro, an island in the western tropical Pacific $(7.1^{\circ} \text{ N}, 171.4^{\circ} \text{ E})$. Solid line is GEOSAT altimeter time series: a continuous, 4-year solution constructed from GEOSAT altimeter data in an 8 x 1 degree (longitude x latitude) region centered on Majuro. Monthly mean values from the Majuro tide gauge (from maps prepared by K. Wyrtki, Univ. Hawaii) are indicated by the dashed line. Agreement between these independent measures of sea level is 4.5 cm rms with a correlation of 0.8. Discrepancies between the two records, occasionally as large as 10 cm, are probably due to a combination of altimeter error (improperly modelled water vapor, satellite orbit uncertainty) and local tide gauge effects not reflected in the open ocean.

Figure 9. Sea level anomaly based on GEOSAT altimetry using the method of collinear differences. The map is constructed from approximately 2400 time series in 2 x 1 degree (longitude x latitude) areas. Anomalies represent departures from a 1-year mean, April 1985-86. Contour interval is 4 cm, negative values shaded.

including subscriptions to the monthly data tapes, to researchers. Potential GEOSAT data users may contact the centre appropriate to their primary area of interest:

Ocean Applications National Oceanographic Data Centre, NOAA 1825 Connecticut Avenue N.W. Washington, DC 20235

Land and Seafloor Applications National Geophysical Data Centre, NOAA 325 Broadway, Dept. 445 Boulder, CO 80303

Snow and Ice Applications National Snow and Ice Data Centre, CIRES Campus Box 449, University of Colorado Boulder, CO 80303

Project Management

This project will be managed by NOAA's National Ocean Service. The Project Manager is:

Dr. Robert E. Cheney Office of Charting and Geodetic Services National Ocean Service, NOAA N/CG1, Room 426A, Rockwall Bldg. Rockville, Maryland 20852 USA Tel: 3014438556 Tlm: NOAA.GEOSAT

GEOSAT ALTIMETER PACIFIC OCEAN SEA LEVEL ANALYSIS

Robert Cheney and Laury Miller, N/CG112 NOAA/NOS, Rockville, MD 20852 (Description of Figure 9.)

The negative anomaly band north of the equator has been a persistent feature since January, but during this time has gradually moved southward from 9° N to its present location of approximately 4° N. The positive band along 12° N has been well-established only since March. Weak positive anomalies are found along the equator while most of the region south of the equator is negative. Large positive values (up to 24 cm) are found east of New Guinea. Overall, the structure in May 1989 is remarkably similar to that observed by GEOSAT in May 1985, suggesting that normal conditions (with respect to El Niño/anti El Niño) have returned to the tropical Pacific.

Annex V

List of Suppliers of Tide Gauge Equipment

- 1. A. OTT GmbH Jagerstrasse 4-12 Postfach 2120 D-8960 KEMPTEN F.R.G.
- 2. MUNRO SESTREL LTD. Loxford Road Barking ESSEX IG11 8PE U.K.
- 3. KENT INSTRUMENTS Biscot Road Luton BEDFORDSHIRE LU3 1AL U.K.
- BEACON WORKS 77 High Street BRENTFORD TW8 OAB U.K.
- 5. AANDERAA INSTRUMENTS Fanaveien 13 P.O. Box 160 N-5051 BERGEN Norway
- 6. NEYRTEC B.P. 75 Centre de Tri 38041 GRENOBLE CEDEX France
- 7. SUBER Sainte-Anne-du-Porzic 29200 BREST France
- 8. AGA NAVIGATION AIDS S-181 8-LIDINGO Sweden
- 9. INSTRUMENTEN FABRIEK VAN ESSEN DELFT The Netherlands
- 10. ACCO, BRISTOL DIVISION 40 Briston Avenue WATERBURY, CT 06720 U.S.A.
- ALSTHOM ATLANTIC INC. NEYTEC DIVISION
 50 Rockefeller Plaza NEW YORK, NY U.S.A.

- APPLIED MICROSYSTEMS, LTD.
 769 Lily Avenue VICTORIA, British Columbia Canada
- 13. BARTEX INCORPORATE 613E Bayview Hillsmore ANNAPOLIS, MD 21403 U.S.A.
- BETHOS, INC. Edgerton Drive FALMOUTH, MA 02556 U.S.A.
- 15. FISHER AND PORTER WARMINSTER, PA 18974 U.S.A.
- GENERAL OCEANICS, INC. 5535 NW Seventh Avenue MIAMI, FL 33127 U.S.A.
- 17. GEORGE KELK LIMITED 48 Lesmil Road DON MILLS, Ontario Canada
- GRUNDY'S ENVIRONMEN-TAL SYSTEMS
 3939 Ruffin Road
 SAN DIEGO, CA 92138
 U.S.A.
- 19. INTER OCEAN SYSTEMS, INC. 3540 Aero Court SAN DIEGO, CA 92123 U.S.A.
- 20. LEEUPOLD AND STEVENS, INC. P.O. Box 688 BEAVERTON, OR 97005 U.S.A.
- 21. MAGANAVOX, ELECTRO-NIC SYSTEMS 1311 Production Road FORT WAYNE, IN 46808 U.S.A.

- 22. METERCRAFT CORPORA-TION 7305 Pulaski Highway BALTIMORE, MD 21237 U.S.A.
- 23. METRITAPE, INC. 33 Bradford Street MIDDLETOWN, RI 02840 U.S.A.
- 24. MILLTRONICS, INC. 2409 Avenue J., Suite D ARLINGTON, TX 76011 U.S.A.
- 25. NEIL BROWN INSTRU-MENTS, INC. P.O. Box 498 1140 RTE. 28A CAUAMET, MA 02534 U.S.A.
- 26. OCEAN DATA EQUIPMENT 5 John Clarke Road MIDDLETOWN, RI 02840 U.S.A.
- 27. PROGRESS ELECTRONIC CO. OF OREGON 5160 N. Oagoon Avenue Swan Island Industrial Park PORTLAND, OR 97217 U.S.A.
- 28. RAYTHEON OCEAN SYSTEMS CO.
 10 Risho Avenue EAST PROVIDENCE, RI 02914 U.S.A.
- 29. SEA AND METEOROLOGY, INC. 630 Oak Street HERDON, VA 22070 U.S.A.
- 30. SEA DATA CORPORATION 153 California Street NEWTON, MA 02158 U.S.A.
- 31. THE SUTTON CORPORA-TION 2190 Fox Mill Road HERDON, VA 22071 U.S.A.

Annex VI

Standard GF3 Subset for Mean Sea-Level (PSMSL)

(Approved by the Committee on IODE Group of Experts on Format Development - June 1983)

1. STANDARD SUBSET

1.1 This subset represents the output format in which the Permanent Service for Mean Sea-Level is prepared to make available copies of its Revised Local Reference (RLR) global bank of mean sea-level data.

1.2 The data are organized into a single multi-series data file as illustrated in section 3.

1.3 Each series contains time sequenced mean sea-level data for a single fixed location. Two types of data are held for each series, monthly means and annual means.

1.4 The annual means are held in data cycles placed in the user formatted area of the series header record, as defined by the definition record given in section 4.1. Each data cycle contains values for the parameters year, annual mean sea-level, and a quality code. The quality code (FFFF7AAN) makes use of just one of the entries in GF3 Code Table 6 (validation flag) viz:

Q - Questionable Value which is taken to mean that the annual mean is affected by missing or interpolated data otherwise it is left blank. If no annual mean was calculated, the mean sea-level is set to its null value (i.e. 9's). 1.5 A single series header record can contain up to 114 annual means. If more than 114 annual means are available, series header byte 397 is set to '1' and the annual means are continued on a second series header record (immediately following the first) with bytes 1-400 set identical to that in the first series header record (except of course for bytes 2, 377-386 and 397).

1.6 The monthly means are held in data cycle records formatted according to the definition record given in section 4.2. Each data cycle contains values for the parameters year, month, monthly mean sea-level, and a two digit quality flag (FFFF6XXN) whose contents specify the number of days of data missing in the raw data from which the monthly mean was calculated. Each data cycle record allows for up to 138 monthly means-further data cycles may be continued on succeeding data cycle records.

1.7 Null values are not specified for the parameters YEAR in the series header record and YEAR and MNTH in the data cycle record. In this subset these fields are mandatory.

2. USER OPTIONS

None-this subset is used as a fixed output format for PSMSL-The Permanent Service for Mean Sea-Level.

3. TAPE STRUCTURE

Test Records
EOF
Tape Header Record Plain Language Record(s) Series Header Definition Record Data Cycle Definition Record
EOF
File Header Record Plain Language Record(s) Series Header Record(s) Plain Language Record(s) Data Cycle Records
Plain Language Record(s) Series Header Record(s) Data Cycle Records
•
etc.
EOF
File Header Record (dummy entries) End of Tape Record
EOF

EOF

Footnote: For a complete description of the GF3 format, please refer to IOC Manuals and Guides No. 17.¹²⁶

4. DEFINITION

4.1 Series Header Definition Record

34 0 3P (19(2x,6(I4,I5,A1,3X))) 3 YEAR7ZTNYEARI413 SLEV7XXDSEA LEVEL (ANNUAL MEAN) (M)I5950.0013 FFFF7XXNQUALITY FLAG FOR SEA LEVEL A1 3 3 3

4.2 Data Cycle Definition Record

1 123456789012	2 3 23456789012345678901234	4 456789012	5 34567890	<mark>6</mark> 012345678	7 8 3901234567890
1 123456789012 45 0 4I 4 4 4 4 4 4 4 4 4 4 5 5 5 7 7 7 7 7 7 7		, I2))) I I AN) (M)I	-	-	001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021
4 4 4					022 023 024

5. ANNOTATED LISTING OF SAMPLE SERIES HEADER RECORD FORMATTED ACCORDING TO THE DEFINITION GIVEN IN 4.1

5.1 Annotated Listing of Sample Series Header Record Formatted According to the Definition Given in 4.2

l 2 3 4 5 6 7 8 12345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890

Annex VII

Recommendations for Contributing Data to the Permanent Service for Mean Sea-Level

1. GENERAL

The Permanent Service is grateful to all the organizations supplying mean sea-level data and does not seek to impose unnecessary conditions upon these contributors. Nevertheless a minimum of quality control must be exercised by the Service if the data bank is to be an authoritative reference. To this end the Service requests the following information for each set of monthly and annual values supplied:

(i) unit (feet, metres, etc.);

(ii) statement of the datum to which the values refer;

(iii) statement of the measured depth of that datum below the primary TGBM;

(iv) an indication of incomplete or deduced data (see paragraph 2);

(v) number of observations per day used to calculate the monthly means;

(vi) any information of changes in data, bench marks or relevant procedures since the previous batch of data.

Although data will be accepted in any format, mean heights should preferably be in the metric system to the nearest millimetre, and the datum to which the means refer should preferably be the tide gauge zero.

2. TREATMENT OF INCOMPLETE RECORDS

One of the most important things for users of the mean sea—level data bank to know is the accuracy of the published figures. Details of the treatment of gaps in the tidal record are of particular interest.

Therefore the Service makes the following recommendations:

(i) small gaps in observed tidal records should be interpolated, if possible, before computing monthly and annual means;

(ii) the interpolation should be performed at an early stage in the processing. One principle to adopt is that of a comparison with the complete records from a nearby station. However we would stress that predicted values are not suitable for interpolation;

(iii) in cases where interpolation is impossible the monthly mean should be compiled from the incomplete data. Where more than 15 days are missing from a month a mean value should not be computed;

(iv) when sending mean values to the Service, authorities are requested to indicate if interpolation has been effected or the exact number of missing days of data. These details should be sent as suffixes after each monthly mean and shown in brackets: e.g. 2487(9) would mean 9 daily mean values were missing and not interpolated when computing the mean of 2487 mm. 913 (xx) would mean missing data were interpolated to provide the average of 913 mm;

(v) if there are 11 or 12 monthly mean values available then an annual mean should be calculated. If the annual mean is computed by averaging the monthly means, the monthly means must first be weighted. The weight for each month should be the number of days for which readings were available.

3. COMPUTATION OF MONTHLY AND ANNUAL MEAN VALUES

The PSMSL draws to the attention of data contributors a publication entitled 'Manual on Sea-Level Measurements and Interpretation'. This was published in 1985 by the Intergovernmental Oceanographic Commission. Additionally PSMSL will be pleased to assist with advice on methods of data processing and determining mean values.

4. PRESERVATION OF ORIGINAL DATA

Contributors are urged to preserve the original sea level data in some permanent form. The information contained in such basic time series is of great value in many scientific studies and should not be lost to posterity.

FORMAT FOR SUBMISSION OF MONTHLY AND ANNUAL SEA-LEVEL DATA TO THE PERMANENT SERVICE FOR MEAN SEA-LEVEL (PSMSL)

Country		
Station		GLOSS number
Co-ordinates:	latitude	longitude
Year		

Month	Values	Number of days for which no data is available	XX if interpolation used
I II IV V VI VII VIII IX X XI XII			
Annual			
Units used:			
Distance betw	veen datum and I	Bench Mark:	
Details of any	changes in this d	listance which have occurred during the year	
No. of observation	ations per day us	ed to calculate mean:	
Name:			
Authority and	laddress:		
·····			
Date:			

Annex VIII

Recommendations for Sea-Level Data Submission to the SOC for ISLP PAC. and TOGA Sea-Level Centre

Recommendations for Submission of Sea-Level Data to the SOC/ISLP

No rigid format has been defined for ISLP monthly mean data that are received at the Centre. These data are collected, in near-real-time, via cable, telex, letter, telephone and satellite. The only requirements are that the co-operating agency clearly identify the data with the correct date and station and that they be consistent with their levelling and units.

Recommendations for Submission of Sea-Level Data to TOGA Sea-Level Centre

Data sent to the TOGA Sea-Level Centre comes in one of the four following categories:

(i) Original analog records from gauges—the records should be clearly marked with the station name and date-time-group (DTG), and that levelling information concerning the gauges be supplied on a routine basis.

(ii) Listing of manually reduced data-the listings should be clearly marked with the station name and date-timegroup (DTG), that levelling information concerning the gauges be supplied on a routine basis, and that the stations be consistent in units.

(iii) Hourly values on magnetic tape-the data should be written on 1/2 inch, 1600 or 6250 BPI, ASCII, no-label tapes in card images with the first data record preceded by

header record and the beginning of every year of data preceded by a header record.

The header record format reserves the first eleven spaces for station identification, the next four spaces for the year, the next two spaces for the month, and the next two spaces for the day of the first data record. The rest of the record is filled with information in a free format, such as latitude, longitude, timezone, etc., i.e.

O1PONAPE 1983 12 1 Lat06 59.4N Long158 13.8E TimezoneGMT

The data record format reserves the first eleven spaces for station identification, the next four spaces for the year, the next two spaces for the month, the next two for the day or the data record, and the next space to indicate if the record is the first 12 hours of the second 12 hours for that day. The next 60 spaces contain the hourly data in groups of five spaces per observation, 12 per record. The data are assumed to be in units of millimeters. If time averaged, the averages are centered on the hour, with the time of the first hour OOOOZ and the last hour 23OOZ. Missing data is flagged by four nines (9999), and each month must be completely filled with either data or missing data flags, i.e.

(iv) Data directly from satellite transmitting stations—the agencies or investigators who wish the TOGA Sea-Level Centre to receive their satellite transmitted data should work directly with centre personnel when developing the programmes for their platforms.

STATION	T															
ID	YE	AR														
:	:	M	ONTI	H												
:	:	:	D	AY												
:	:	:	:	11	NDICAT	OR FO	R 1ST	OR 2	ND HA	LF OF	THE	DAY				
:	:	:	:	:												
•	:	-	:	:												
:		- : -	:	: -	:	:	:	:	:	:	:	:	:	:	:	::
01PONAP	E 19	983	12	11	1010	1090	1152	1128	1048	916	776	654	566	479	462	547
01PONAP					693		954				9999			9999	9999	9999
01PONAP	E 19	983	12	21	811	1037	1212	1288	1256				578	439	371	408

Annex IX

Mechanism for Co-ordination of the GLOSS Implementation

Annex X

WOCE Sea-Level Network

ATLANTIC		Port Louis		Easter S, D
Bermuda	S	Port Victoria		Nuku Niva S
Porto Grande	S	Male		Penrhyn S
Dakar	S, D	Heard		Wake S
Tristan da Cunha	S, D	Port Elizabeth		Funafuti S
St. Helena	S, D	Durban		Noumea S, D
Ascension	S	Amsterdam	D	Socorro D
So. Georgia		Kerguelen	D	Suva S
Simonstown		Marion	D	Kwajalein S, V, (D)
So. Orkney	S, D - Signy	Syowa	(V)	Honolulu S, D - Maui,
Faraday		•		V - Kauai
Vestkapp		PACIFIC		Truk S
Duck	S	Hobart	S , V	Pago Pago
Lake Worth	S	Macquarie	,	Midway S
Settlement Pt.	S	Darwin		Papeete
Gd. Cayman		Christmas	S	
Puerto Rico	S	Ponape	S	Key
St. Croix	S	Tarawa	S	S Satellite Transmission
Diego Ramirez		Majuro	S	D Doris
St. Peter & Paul Rocks		Nauru	S	V VLBI
Fernando de Noronha	S	Rabaul	S	() Planned
		Honiara	S	
INDIAN		Rarotonga	S	
Cocos		Callao	S	Ref: WOCE Data Management
Reunion	D	Kapingamarangi	S	Committee. Report of the
Christmas		Johnston	S	2nd Meeting DMC-2. Institut fur
Diego Garcia	(D)	Valparaiso	S	Meereskunde, Hamburg, FRG, 6-8
Mombasa		Kanton	S	November 1989.

WOCE Sea-Level Network

