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1. INTRODUCTION 

If a seismic wave is propagating in solid media the main restoring force 

involved is the interaction between adjacent particles, i.e. the elastic force. When 

fluid media are considered this is no longer true and the restoring force is 

primarily due to gravity. 

Among the gravity waves that can propagate near the oceanic surface the most 

important ones, due to their amplitudes, are the tsunamis. Such waves can be 

distinguished from other gravity waves for their genesis. Actually, tsunamis are 

more commonly generated by submarine earthquakes and then they can be 

considered as seismic sea waves (Ward, 1989). Due to their generation 

mechanism, periods and wavelengths associated with tsunamis are longer than 

those associated with ordinary sea waves, and for large submarine earthquakes 

their amplitudes can be very impressive especially when tsunamis approach the 

shorelines. 

In this work we study how the tsunami mode is generated by a scaled double- 

couple seismic source and how it propagates in realistic models of oceanic media. 

Several authors attacked the problem of how the tsunami mode is excited by a 

seismic source for a fully coupled ocean and solid earth model. Pod’yapolsky 

(1968,197O) is the first to consider tsunami mode as one of the normal modes of 

the earth. Ward (1980, 1981, 1982a, b) applies originally the free oscillations 

formalism for a finite body to a spherically symmetric oceanic model and he 

shows how the energy of a tsunami mode is partitioned among gravitational and 

elastic components for fluid and solid media, Comer (1984) considers the same 

problem but using a flat, laterally homogeneous, model of the earth. He studies 

the excitation of the tsunami mode as a propagating mode and then the 

theoretical development of the solution is different from Ward’s (1980). Comer’s 

(1984) method is based on a formalism similar to those used for the study of 

Rayleigh waves, but suffers from some limitations, e.g. the computed examples 

are for a half-space underlying a single incompressible liquid layer and the 

excitation problem is studied using a variational approach for a uniform ocean 

depth. 
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The method developed and used in this work is the direct extension to 

tsunami waves, propagating in multilayered oceanic media, of the well-known 

- Haskell method (Haskell, 1953), which has been successfully employed for the 

study of Rayleigh and Love waves in multilayered structures and for the 

construction of broad-band synthetic seismograms (e.g. Panza, 1985; Panza and 

Suhadolc, 1987; Florsch et al., 1991). We solve the equations of elastic motion 

when a constant gravitational field acts in the downward direction in the 

multilayered fluid which is in welded contact with a multilayered solid half- 

space where we assume that only elastic forces act. In such a way we can use the 

efficient algorithms valid for flat, multilayered oceanic structures, for the 

production of synthetic mareograms due to the excitation, by seismic sources, of 

the tsunami mode propagating in oceanic structures. This method is then 

extended to laterally heterogeneous structures in order to study the effect of the 

variation of the ocean bottom. 

Such realistic synthetic tsunami mareograms not only are important for a 

subsequent inversion process for some important physical parameters (see e.g. 

Ritsema et al., 1995), but they play a relevant role for a quick system of tsunami 

warning since a database of synthetic parameters (e.g. maximum height at 

different locations) can be constructed before the event occurs. 

2. PHASE VELOCITIES AND EIGENFUNCTIONS OF TSUNAMI WAVES IN 

MULTILAYERED OCEANIC STRUCTURES 

The mathematical formulation we adopt for the problem is similar to the one 

used by Comer (1984), with the exception that we take into account the elastic 

forces in the liquid medium in order to obtain the same form of solution for the 

displacement in the solid and liquid layers. 

In order to take into account the effects due to the gravity and elastic forces we 

follow Pod’yapolsky (1968, 1970): the gravitational force is assumed to be uniform 

and acting in the vertical direction, i.e. gpe,, leading to a static displacement field, 

that may be regarded as an equilibrium state. The variation of this force due to 
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the dynamic displacement field, u(x,t), is caused only by the variation of the 

4 density, i.e. by - = -V . u. Then the equations of motion 
P 

can be written as: 

a% 
a*V(V+u) - ge,V.u = - 

at* 

in the liquid layers, and 

a% 
a*V(V.u) - ge,V.u - p2Vx(Vxu)= - 

at* 

(1) 

(2) 

in the solid layers, where a is the velocity of P-waves, p is the velocity of S-waves 

and u = (u, 0, w) is the displacement vector. Equations (1) and (2) can be derived 

from equation (8.59) of Aki & Richards (1980). In fact, in the equilibrium state, 

gravitational acceleration, go, and density, PO, are constant, the gravity potential, 

U, is equal to - go po z and consequently the perturbation of U is - go po w. 

At the free-surface of the fluid the pressure p, that in the liquid is due both to 

the elastic force and to the hydrostatic pressure, has to vanish, i.e.: 

p[Z-[ +w(z-i)l=p(z-i)+~l w-1 = -p-$2,V~u-, + P-&W& = 0 (3) 
2-f 

where the second order terms are neglected. 

At the interfaces between the liquid layers the pressure and the vertical 

component of motion have to be continuous, If the j-th and (j+l)-th liquid layers 

are considered, the continuity conditions should be satisfied at the perturbed 

interface, i.e. at z=z-j+w(z-j), but for the vertical component of displacement it is 

equivalent to consider the unperturbed interface, i.e. z=z-j. The conditions of 

continuity between the j-th and (j+l)-th liquid layers give: 

(4) 
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-P_ja2jV ‘U-j + P-jgw-jl = 
Z-1 

- p-j-lCt2_j-lv ’ u-j-1 + P-j-lgw-j-ljzw, 
I 

At the liquid-solid boundary (0-th interface according to Figure 1), we have: 

p-&Vq(zo) = q(zg) (W 

0 = +d (54 

In condition (5b) the terms corresponding to the hydrostatic pressure are 

neglected since the vertical displacement in the solid is much smaller than that 

in the liquid and the gravity term in equation (2) will be later neglected; thus, o1 

is the normal stress due only to the elastic forces, 

At the interface between the m-th and the (m+l)-th solid layers all of the 

components of displacement and of stress are continuous, i.e. 

w&m) = %+l(znl) 

%n(znl) = %l+l(%l) 
(6) 

%I(%) = %+l(zrn) 

for 1 I m i N-l. 

The solution of the equation of motion in the j-th liquid layer, due to both 

elastic and gravitational forces, in terms of a harmonic wave propagating along 

the x axis, with angular frequency w and phase velocity c, is: 
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W-j (Xtzf t, = a2 %(-j) -1 ‘[ A exp[ -y] - q2(-j)B-j eXp[-~]]exp[i(mt - kx)] 

where k is the horizontal wavenumber, i is the imaginary unit and 

g -- rll(-j) = +)W-j zclej 

The solution of the equation of motion in the m-th solid layer is: 

_ irpmPm 
0 

[Em exp[-Fj+F, exp[Fj] 1 exp[i(wt - kx)] 

where 



1 i[l-(pm /C)2]1’2 ifc>P, 

- rpm= [(&/~)~-lr’~ ifccp, 
W) 

Gravity has no effect on the shear waves (9a), and, as it easy to estimate that the 

effect of gravity on the total displacement is minor. Therefore in the following 

we neglect the gravity force in the equations of motion for the solid medium. 

The formulas (9a) then reduce to: 

um(x,z,t) ={s[Cm exp(-y)+D, exp(y)]+ 

_ irpmPm 

0 
[Em exp(-y)+F, exp(y)]lexp[i(mt -h)] 

w,(x,z,t) ={ra~m[Cmexp(-~]-D,exp(~)]+ 

where 

1 i[ 1 - (a, / c)~]~‘~ ifc>a, 

ram= [(c~,/c)~-l~‘~ ifc<a, 
(lob) 

Introducing the boundary conditions (see Appendix A) the dispersion equation 

can be constructed and the eigenvalues determined following standard methods 

(see Appendix B). 

Once the phase velocity is determined, the coefficients in the expressions (7) 

and (9) for the eigenfunctions may be determined by a recursive procedure. The 

coefficients for the fluid and the solid layers are calculated separately, each with 

its own arbitrary normalization. Then from any boundary condition at the liquid- 

solid boundary (for example corresponding to the continuity of the vertical 

displacement) they are reduced to the same normalization. 
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For the solid layers the equation (see Appendix B) 

CL;‘D,...DN-,L, (11) 

is used for the calculation of the coefficients of the eigenfunctions in the half- 

space C,, E,. One of them may be assumed to be equal to 1 and the coefficients for 

the upper layers are determined using Haskell (1953) layer matrices up to the first 

solid layer. 

For the fluid layers we start from the coefficients of the uppermost layer, which 

are determined from equation (3) corresponding to the condition of free surface : 

S 
A-, 

-e t 1 B 
=o 

-E 
(12) 

where the S matrix is defined in Appendix A. The coefficients for the lower 

liquid layers are determined recursively from the equation 

(13) 

where the matrices L and K are defined in Appendix A. When the coefficients for 

the last (j=l) liquid layer are determined, the coefficients in the solid and in the 

fluid layers are matched by equating the vertical displacements at the liquid-solid 

boundary and from this condition the normalization coefficient, for all the liquid 

layers, can be determined. 

3. TSUNAMI WAVES EXCITED BY SEISMIC SOURCES 

Once the eigenvalues and the eigenfunctions are determined, it is possible to 

calculate the synthetic mareogram in a laterally homogeneous oceanic model, 
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due to the excitation of the tsunami mode by a double-couple seismic source, 

using the asymptotic expression for a harmonic wave (A.A.V.V., 1989): 

quP,z,w) = exp(-iz / 4) exp[iw(t - T)] X(h,,cp)R(o) U(Z,W) 

4% $7 JG& $ig 
(14) 

where h, is the focal depth (from the free surface), X is the epicentral distance, 

T=X/C is the travel time, J=X is the geometrical spreading, cp is the strike-receiver 

angle, u = ue, + we,, R(o) = I R(o) I exp[i a&R(o))] is the Fourier transform of the 

source time function and X(h,,cp) represents the part of the excitation that is 

function of the strike-receiver angle and of the source depth, h,. The source 

geometry, the complete expression of X(h,,cp) f or a double couple point-source, 

and the limits of validity of (18) are given by Panza et al. (1973). The quantity I, is 

the energy integral (see equation (7.74) in Aki and Richards,l980). 

For weakly laterally heterogeneous media the asymptotic expression for the 

harmonic wave is of the same form of (14) (A.A.V.V., 1989), the difference is that 

the third and the fourth factors in the right term of (18) should be calculated 

locally at the source and at the receiver respectively, and in the second factor 

‘I: and J have to be calculated for the laterally varying medium: 

qxwwq = exp(-in/4)exp[io(t-~)]X(h,,cg)R(w) u(z,o) 

4G y’i;T 4% $q 
(15) 

s r 

where the subscripts s and r mean that the quantities have to be calculated 

respectively at the source and at the receiver. 

We assume that the structure is varying only along the direction of 

propagation, i.e. along the x-axis. This restriction is not important when the 

phase velocity is changing approximately linearly along the path. Actually, as is 

shown in Appendix C, the difference between the calculated geometrical 

spreading (and the calculated travel time) for our model and a model in which 

the angle between the direction of propagation and the direction of variation of 

the structure is not zero, is negligible for a wide range of angles. Therefore, in a 2- 

D medium the phase velocity, that enters in the calculation of 7 and J, can be 
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considered a function of x only. Since c(x) cannot be computed exactly, we assume 

that c varies linearly between the values corresponding to the structural models 

limited by the vertical planes, parallel to the y-z plane, passing for 

x=x0(=0),x1 ,...,xJ=X) (see F igure 2.a). At each point xi (i=l,...,n) the phase velocity 

of the tsunami mode co, cl,..., c, can be evaluated using the formalism of Section 

2. The formulas for z and J are given in Appendix C. 

4. EXAMPLES OF CALCULATION IN THE FREQUENCY DOMAIN 

In Figure 3a are shown the amplitude spectra, for the radial and the vertical 

component of motion, calculated at a distance of 500 km from a double-couple 

source with a seismic-moment of 1Ol3 Nm and a focal depth of 14 km from the 

free-surface (i.e. 10 km deep in the solid media). The strike-receiver angle 

corresponds to a maximum of the radiation pattern and this choice is used for all 

the computations. The structural model that is adopted in the computations 

correspond to the one used by Comer (1984): a 4 km liquid layer (a=1.5 km/s, 

p=l.O g/cm3) over a solid half-space with a=7.15 km/s, p=4.1 km/s, p=3.1 g/cm”. A 

general characteristic is that the dip-slip mechanism (suffix ds in Figure 3a) is 

more effective in the generation of tsunami motion than strike-slip, while the 

radial component of motion is greater than the vertical one by about a factor of 3. 

In Figure 3b are shown the amplitude spectra for different thicknesses of the 

liquid layer: 4 km, 6 km and 8 km. The parameters of the solid half-space are the 

same as in Figure 3a, the focal mechanism considered is dip-slip, and the source 

is located 10 km deep in the solid layers. The most important effect is due to the 

dependence of the phase and the group velocities on the thickness of the water 

layer that is shown in Figure 4 (that can be compared with Figure 1 of Ward, 

1980). 

TO study the effect of the layering of the solid structure, the source radiation 

spectra are calculated for three solid models: model 1 corresponds to the 

homogeneous half-space used by Comer (1984); model 2 is the same of model 1 

with a sedimentary layer (a=3.5 km/s, p=l.O km/s, p=1.5 g/cm3) 1 km thick on top 

of the half-space; model 3 has a crustal layer (a=5.2 km/s, p=3.0 km/s, p=2.6 
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g/cm3) 12 km thick, over the half-space (a=%1 km/s, p=4.7 km/s, p=3.2 g/cm3). 

_ The thickness of the ocean is fixed at 4 km, while the seismic source corresponds 

to a dip-slip focal mechanism. In Figure 5 are shown the amp.litude spectra for 

the vertical component of motion, calculated using model 1 and model 3. The 

source-receiver distance is 500 km while two focal depths, 9 and 14 km are 

shown. While the influence of the source-receiver distance on the amplitude 

spectra is a scale factor, the combination of the source depth effect with the solid 

layerir,g is more interesting. Figure 5 shows that the earthquakes within the crust 

can excite more intensively the tsunami mode than the deeper earthquakes and 

that the lower is the S-wave velocity at the depth of the source the larger is the 

excitation of the tsunami mode. Calculations carried out for various 

combinations of a and p, show that the parameter controlling the amplitude of 

the tsunami waves is the S-wave velocity rather than the P-wave velocity. For 

sources located below the sediment layer the differences in the amplitude spectra 

for the models 1 and 2 are negligible and in Figure 5 the curves calculated for 

Model 2 would exactly overlap those relative to Model 1. This can be explained 

comparing (see Figure 6a,b) the eigenfunctions for the three models as functions 

of depth. The frequency chosen (0.007 Hz, i.e. T=143 s) corresponds approximately 

to the maxima of the amplitude spectra shown in Figure 5. The curves shown in 

Figure 6 are in good agreement with those shown by Ward (1980; Figures 3 and 4) 

for a period of 150 s. 

5. SYNTHETIC MAREOGRAMS 

In Figure 7 are shown the synthetic signals, obtained from (14) and (15), for a 

dip-slip mechanism with M,=8.2; the focal depth are h,=14 km (Fig. 6a) and 

h,=34 km (Fig. 6b). We decide to account for source finiteness by properly 

weighting the point source spectrum using the scaling laws of Gusev (1983), as 

reported in Aki (1987). The structural model is model 3 of Section 4. For each of 

the two source-receiver distances considered the upper trace refers to the 1-D 

model and the lower trace to a laterally varying model. In the laterally varying 

model the liquid layer is getting thinner with increasing distance from the 
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source, with a gradient of 0.00175 and the uppermost solid layer is compensating 

this thinning. At 500 km from the source the effect of the lateral variation of the 

sea bottom is negligible and this is not surprising since, Ah, the difference in the 

thickness of the liquid layer between the 1-D and the 2-D models, is only of 1 km. 

After 2000 km from the source, Ah is equal to 3.5 km and the effects due to the 

variable bathymetry are clearly visible: 1) the 2-D wavetrain is arriving later than 

the 1-D wavetrain; 2) the amplitudes of the 2-D signals are generally larger. These 

effects can be explained by the dispersion of the tsunami mode: for a great range 

of periods (10000-200 s approximately) the phase and group velocities are directly 

proportional to the square root of the thickness of the liquid layer (see Figure 4), 

and when the tsunami mode is propagating in structures with a thinning liquid 

layer the differences between the velocities at the various periods become 

smaller, making the wavetrain more concentrated in time. The other factor 

which causes the slower decay of the amplitudes of the tsunami wavetrain is the 

conservation of the energy flux, since the wavetrain, as it propagates, is spread 

over thinner liquid layer. 

In order to compare the theoretical parameters that can be extracted from 

synthetic signals with experimental ones, we show in Figure 8 the data set of Abe 

(1995) with the maximum amplitude curves (vertical component) calculated up 

to a epicentral distance of 2000 km, using both model 1 and model 3 of section 4, 

and a dip-slip source with the focal depth equal to 14 km and M, equal to 8.1 and 

7.7. 

AS a further example, we show some synthetic mareograms calculated for the 

tsunami mode propagating in a realistic model. The scheme of the laterally 

heterogeneous model considered is shown in Figure 9a, and represents a possible 

scenario for a tsunami excited by an earthquake generated at a subduction zone. 

In Figure 9b are shown the synthetic mareograms (vertical component) calculated 

at various distances along the section shown in Figure 9a for a lateral extension 

of zone C equal to 500 km. The elastic parameters of the crustal layer and of the 

half-space are those of model 3. The source has a dip-slip focal mechanism, focal 

depth of 16 km and M,=8.0. In Figure 10 we show the maximum amplitude of 

the tsunami wavetrain (vertical component) versus epicentral distance, X, for 

different combinations of magnitude, mechanism and focal depth, that are 
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calculated using the structural model of Figure 9a. The comparison between the 

curves of Figure 10 and those shown in Figure 8 indicates that the lateral 

variations of the sea bottom can strongly modify the height of the Tsunami 

wavetrains, in terms of amplification or de-amplification according to the 

thinning or the thickening of the liquid layers. 

6. CONCLUSIONS 

The method developed allows us to calculate synthetic signals due to the 

tsunami mode, excited by a scaled double-couple source and propagating into an 

ocean, of variable thickness, fully coupled with the solid earth. 

The increase of the tsunami wavetrain maximum amplitude in shallow water 

is caused not only by the conservation of the energy flux for a given frequency 

and then a distribution of the flux over a thinner water layer, but also by the 

decrease of the velocity dispersion at the frequencies corresponding to the 

maximum radiation. 

Two main practical applications of our results are: 

1) inversion of experimental tsunami recordings for some source parameters; the 

effectiveness of such an approach depends on the availability of tsunami 

measurements which are not heavily affected by unknown tide-gauges 

instrumental response or by harbour resonances: when tsunami records coming 

from pressure gauges in open ocean are available, some very long-period source 

characteristics can be revealed (Ritsema et al., 1995). 

2) construction of a database for a quick system of tsunami warning; the 

calculated tsunami signals allow us to determine easily, for any source of interest, 

the maximum height of tsunami motion expected at different locations, taking 

into account the local variations of the sea bottom; these computations can of 

course be made before the event occurs, thus optimizing the efficiency of any 

warning system. 
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APPENDIX A. BOUNDARY CONDITIONS 

The boundary condition at the free surface, equation (3), can be written as 

al,V . u-p - gw-, = 0 

or in matrix form 

(Al) 

W) 

The boundary conditions at the interfaces between liquid layers correspond to 

the continuity of the vertical component of displacement, w and of the pressure, 

p, at the interface z-j+w-j (since in an ideal fluid the condition of continuity of the 

tangential component of displacement is not required). We assume that the 

variation in depth of the interface has no effect on the boundary condition of the 

displacement and we accept continuity of w at z= z-j instead of z= (z_j+w-j), while 

for p the variation is taken into account at z= z-j. The pressure increment due to 

the variation of the hydrostatic pressure is gw_jl:P_j-l- pej!. Therefore we may 

assume that at the boundary z=zi there is continuity of the quantity 

P-j”!j( v. lJ-j) - gP-jw-j. 

Using (7) and omitting the factor exp[i(wt - kr)], one obtains that 

where 

Lmi = 
f 

a-jW-j g 
--_- 

2COc C I r -P.ja2j 
1 + grll(-j) 

ct~jw2 

C 

! ! 

P.jafj l+ 

aejW-j 
--  +A 

2COc 
gr12(-i) .- 
aejo2 _1 

043) 

(4 

14 



- K-j= 

exp - L 
H -jq2(-j) 

a-j 

0 

0 

exp - 
H -j%(-j) 

L 1 a-j 1 

(A5) 

and H-j is the thickness of the j-th liquid layer. The layer matrix, which relates the 

vertical component of displacement and the normal stress in the j-th liquid layer 

with the same quantities in the j+l-th liquid layer, is: 

The relationship between the coefficients in (7) for the uppermost liquid layer 

and those for the first liquid layer, can be found using (A3) and (A6): 

i 

A-e 

B-e 

and the boundary condition (Al) can be written: 

A-1 

S-eL\D-eD-e+l +a. D-,L-1 

g-1 

A-1 
=M 

B-1 I = 0 

(A7) 

w3) 

The expression for the pressure in the last liquid layer (1-st in Fig. 1) is: 

p-l = p.+?,V. u-, = R (A9) 

and the expression for the vertical component of displacement can be written in 

the same form: 
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(AlO) 

The boundary conditions (5a-5b) at the liquid solid interface can be written, 

using (9), (A9) and (AlO), in the following matrix notation: 

f 

i 

ralal ralal P: P: -- -- 
C C C2 7 ‘i 

Cl 

Dl 

El 

Fl 

= 

= ‘PI 

i r1 

From (AS), containing the matrix M=(ml, mz), one obtains 

P2 

r2 

(All) 

A-, = -m,K B -1= mIK (AW 

where K is an unknown multiplier, and the right-hand side of (All) can be 

written in the following form: 

FK= (A13) 

The two equations (All) can be reduced to one for the coefficients of the first 

solid layer, and considering the condition (5~) one has: 

Cl 
C Dl 
11 El 

=o 

Fl 

(AW 
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where C is a (2x4) matrix and the problem is now formally equivalent to that for 

a system of solid layers, where (A14) replaces the condition of free surface, and 

the dispersion function can be constructed using either Haskell (1953) or Knopoff 

(1964) method. 

APPENDIX B. HASKELL AND KNOPOFF METHODS 

After some manipulations equation (A14) can be transformed to 

4 

: 

(Wl) 
c = 2f,p:c4y, 

q / (Pl c2) -Y1 -qp1 c2 Dl 

El 0 Yl 0 1 -(l-y1) El 

\b/ $3 

=o (W 

where p1 is the density of the uppermost solid layer, y1 = 2pf / c2 - 1 and q = fz/fl. 

Following Schwab (1970), from (Bl) the matrix To can be extracted: 

0 (I-yl)’ y: qiplc2 Yl(Y1 - 1)) W’) 

and Knopoff’s algorithm (Schwab and Knopoff, 1972) can be immediately applied. 

In order to derive the dispersion equation by Haskell (1953) method we start 

from (A13). At the interface between the m-th and (m+l)-th solid layer, applying 

the boundary conditions (6) to expressions (7) we obtain: 
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LmKrl 

- - 
i ‘i 

I =L m+l 

cm 
Dm 
Em 

Fm \ / 

C m+l 

D m+l 

E m+l 

F m+l 

where the matrices L, and K, are: 

L, q 

&I & 
C2 C2 

amram amram 
C C 

2CLmamram 2P-mamram 
C C 

Pm”k(Ym -l) -Pm&i(Ym -l) 

Km= 

[exp[- “‘TmHm) 

P mr(3m P mrpm -~ -~ 

Pi Pi -- 
C2 C2 

Pm(Ym -l) -clm(Ym -l) 

2CLmPmrpm 2pmPmrpm 

C C 

0 

exp - wrpmHm 

i 1 Pm 

u33) 

w 

0 

0 

0 

Using recursively (B3), the relationship between the coefficients of (9) in the 

- first solid layer and the coefficients in the half-space (n-th layer) can be written as: 

I 

Cl Dl El Fl 
= L;‘D 2”’ PI-&I? ( 

cn 
Eli (B5) 

18 



where the matrix L, (4x2) contains the 1st and the 3rd columns of the matrix L, 

_ and the layer matrix is D, = L,KzLz (m=2,... ,n-1). Using (A13), one obtains (13) 

where all of the matrices appearing are real. 

APPENDIX C: FORMULAS FOR THE TRAVEL TIME AND THE GEOMETRICAL 

SPREADING 

If the phase velocity, c(x), varies linearly along the x-axis, i.e. c=cO(l+ex), and if 

at x0=0 the angle between the wave direction of propagation and the x axis is 00 

(see Fig. 2b), then at x=X: 

y = (coseo - case) 
E sine0 (Cl) 

7 = [cash-‘(1 / sine) - cash-‘(1 / sinOo)] 

E co 
K2) 

J=Y 
sin O. (C3) 

while if the wave is propagating along x-axis, so that 80 =0 and Y=O, at x=X: 

T= 
log( 1 + EX) 

E co 

J= l+$ X 
( 1 

(C5) 

(C4) 

If c(x) is a piece-wise linear function the travel time is calculated by the 

summation of the expressions (C.2) or (C-4) and the expressions for the 

geometrical spreading become: 
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- I 
coseo case, n c Yi 

T= sine0 I=1 COS0i COSei-1 
e. $0 

e. =o 
0) 

where the yi (i=l ,...,n) are calculated using formula (Cl) at x=xi. 

To justify the assumption that 8s can be considered equal to zero, we calculate 

the travel times and the geometrical spreading using formulas (C2-C4) and (C3- 

C5) under the assumption that the velocity varies in the direction OX (see Fig. 

2b). Assuming a velocity variation similar to that used in this study (from 0.2 

km/s at x=0 to 0.014 km/s at X=2000 km) the difference in the geometrical 

spreading evaluated by formulas (C6) is about 5% for e0 =46”, and 10% for 80 =64”. 

Such difference is obtained at low frequencies, for which the difference in 

velocities due to the decrease of the thickness of the water layer is maximum. For 

higher frequencies the difference in velocities decreases, and the effect is even 

smaller. 

Estimation of the difference in the arrival times for the same models shows 

that the signal arrives 100s earlier if &=25”, and 1000s earlier if e0=72”. This does 

not lead to a significant difference with respect to the signals calculated for 

normal incidence, even if the take-off angle with respect to the x-axis is 

sufficiently large (-60-70” ). 
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FIGURE CAPTIONS 

Figure 1. Reference system for the laterally homogeneous (1-D) model. 

Figure 2. Reference system for the laterally heterogeneous model. a) Lateral 
view; b) top view. The star and the triangle represent respectively the source 
and the receiver site position. 

Figure 3. Amplitude spectra calculated for a double-couple source (1013 N m 
seismic moment) at 500 km from the receiver. a) Radial (x) and vertical (z) 
components of motion for pure strike-slip (ss) and pure dip-slip (ds) 
mechanisms; b) radial and vertical components for a liquid layer 4, 6 and 8 
km thick. 

Figure 4. Phase (p) and group (g) velocities dispersion curve of the tsunami 
mode for three values of the thickness of the liquid layer: 4 (solid lines), 6 
(dashed lines) and 8 (dotted lines) km. 

Figure 5. Amplitude spectra calculated for a double-couple source (1013 N m 
seismic moment) using model 1 (a), model 2 (b) and model 3 (c) (see text for 
the elastic parameters information). In each case, two focal depths, 9 and 14 
km (second part of the acronym), and two source-receiver distance, 500 and 
2000 km (third part of the acronym), are shown. 

Figure 6. a) Eigenfunctions of the radial (solid line) and vertical (dotted line, 
normalized to 1 at the free-surface) component of motion at frequency equal 
to 0.007 Hz, in the fluid. The curves for the models 1, 2 and 3, are totally 
overlapped; b) eigenfunctions in the solid layers. 

Figure 7. Synthetic signals for the tsunami mode (vertical component) 
excited by a dip-slip mechanism with M,=2.2 1021 Nm. a) hs = 14 km; b) hs = 
34 km. For each source-receiver distance, X, the upper trace refers to the 1-D 
model and the lower trace to the 2-D model. 

Figure 8. Curves of the maximum height of the calculated tsunami signal 
(vertical component) versus the epicentral distance. Each acronym shows 
the 1-D model (1 or 3) and the magnitude (M,) adopted in the calculations. 
The symbols the experimental points, for two different magnitudes (squares 
for M,=8.1, circles for M,=7.7), shown by Abe (1995). 

Figure 9. a) Sketch of the laterally heterogeneous model for a realistic 
scenario. The numbers refer to the thickness (km) of the water, of the crustal 
layer and, to the lateral extension of each zone. b) Synthetic mareograms 
(vertical component) calculated at various distances along the section 
shown in a). The extension of zone C is 500 km. 

Figure 10. Curves of the maximum height of the calculated tsunami signal 
(vertical component) versus the epicentral distance. Each acronym shows 
the focal mechanism (ds indicates for dip-slip, ss strike-slip), the focal depth 
(km) and the magnitude (M,) adopted in the calculations. The model 
adopted in the calculations is shown in Figure 9a. 
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Figure 1. Reference system for the laterally homogeneous (1-D) model. 
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Figure 2. Reference system for the laterally heterogeneous model. 
a) lateral view; b) top view. The star represents the source and the triangle the receiver site. 
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Figure 3. Amplitude spectra calculated for a double-couple source (1013 Nm seismic moment) at 
500 km from the receiver. a) radial (x) and vertical (z) components of motion for pure strike- 
slip (ss) and pure dip-slip (ds) mechanisms; b) radial and vertical components for a liquid 
layer 4, 6 and 8 km thick. 
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Figure 4. Phase (p) and group (g) velocities dispersion curve of the tsunami mode for three 
values of the thickness of the liquid layer: 4 (solid lines), 6 (dashed lines) and 8 (dotted 
lines) km. 
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Figure 5. Amplitude spectra (vertical component of motion) calculated for a dip-slip 
double-couple source (1013 Nm seismic moment) using model 1 and model 3 (see text for the 
elastic parameters specification). The source-receiver distance is 500 km and two focal 
depths, 9 and 14 km (second part of the acronym) are shown. 
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Figure 6. a) Eigenfunctions of the radial (solid line) and vertical (dotted line, normalized to 1 
at the free-surface) component of motion at frequency equal to 0.007 Hz, in the fluid. The 
curves for the models 1, 2 and 3, are totally overlapped; b) eigenfunctions in the solid layers. 
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Figure 7. Synthetic signals for the tsunami mode (vertical component) excited by a dip-slip 
mechanism with &=2.2 1021 Nm. a) hs = 14 km; b) hs = 34 km. For each source-receiver 
distance, X, the upper trace refers to the 1-D model and the lower trace to the 2-D model. 
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Figure 8. Curves of the maximum height of the calculated tsunami signal (vertical component) 
versus the epicentral distance. Each acronym shows the 1-D model (1 or 3) and the magnitude 
(M,) adopted in the calculations. The symbols the experimental points, for two different 
magnitudes (squares for M,=S.l, circles for M,=7.7), shown by Abe (1995). 
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Figure 9. a) Sketch of the laterally heterogeneous model for a realistic scenario. The numbers 
refer to the thickness (km) of the water, of the crustal layer and, to the lateral extension of 
each zone. b) Synthetic mareograms (vertical component) calculated at various distances 
along the section shown in a). The extension of zone C is 500 km. 
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Figure 10. Curves of the maximum height of the calculated tsunami signal (vertical 
component) versus the epicentral distance. Each acronym shows the focal mechanism (ds 
indicates for dip-slip, ss strike-slip), the focal depth (km) and the magnitude (M,) adopted 
in the calculations. The model adopted in the calculations is shown in Figure 9a. 
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