
m Intergovernmental
Océanographie
Commission

Manuals and Guides No. 17

(¡3F3)
A GENERAL FORMATTING SYSTEM

FOR GEO-REFERENCED DATA

VOLUME 4

USER GUIDE TO THE GF3-PROC SOFTWARE

1989 Unesco

FOREWORD

The General Format 3 (GF3) system was developed by the I O C Technical Committee on International
Océanographie Data and Information Exchange (IODE) as a generalised formatting system for the exchange
and archival of data within the international océanographie community. It was presented to the Ninth Session
of the Technical Committee (New York, 15-19 January 1979) which recommended that G F 3 "be adopted for
general use in international océanographie data exchange" and "urged M e m b e r States to utilize G F 3 as the
standard international exchange format", 'fhis recommendation was subsequently endorsed by the I O C
Executive Council at its Eleventh Session (Mexico City, 1-3 March, 1979).

The G F 3 format is supported by a comprehensive software package, GF3-Proc, which the I O C is prepared
to make freely available on magnetic tape to all organisations or laboratories involved in the international
collection, management or exchange of océanographie and other earth sciences data. Technical support for
the distribution, installation and maintenance of GF3-Proc is provided, on behalf of the I O C , by the British
Océanographie Data Centre (B O D C) . Requests for copies of GF3-Proc should be forwarded to B O D C at
the address given overleaf and should include a clear description of the computer system on which it is to
be installed, including the manufacturer, make and model number of the machine, the name and version of
the operating system and an identification of the Fortran compiler. A small charge may be made to cover
the cost of the tape and its documentation.

The use and development of the G F 3 system is kept under review by the I O C Group of Experts on
Technical Aspects of Data Exchange.

Support services in the use of G F 3 are provided by the Service Hydrographique of the International Council
for the Exploration of the Sea (ICES), acting as the Responsible National Océanographie Data Centre for
Formats, R N O D C (Formats). The ICES Service Hydrographique is assisted in this task by the British
Océanographie Data Centre which provides technical advice and guidance on the use of G F 3 and its
supporting software.

The R N O D C (Formats) operates under the following Terms of Reference :

i) T o act as an archive centre for international marine environmental data formats, maintaining a full set
of documentation on all such formats.

ii) T o act as an archive centre for the code tables for G F 3 and the code tables for all other international
océanographie archival formats, and for external code tables (e.g. taxonomic codes, chemical substances
codes, etc), maintaining references to all such code tables.

iii) T o manage the expansion of the existing G F 3 parameter code table as necessary under the guidance
of the I O C Technical Committee on International Océanographie Data and Information Exchange
(through its Group of Experts on Technical Aspects of Data Exchange), and to provide a focal point
to which user requirements for new parameter codes m a y be directed.

iv) T o maintain user aids for G F 3 , including a programme library for the processing of G F 3 , guidance
notes and user guides, documentation of standard and experimental subsets of G F 3 , and sample data
tapes of G F 3 subsets.

v) T o function as a centre for services to other centres in I O C and ICES M e m b e r States in such G F 3
matters as responses to requests for information about, or copies of, items in i) to iv) above.

vi) T o prepare a report to the I O C Technical Committee on I O D E , together with a Newsletter for
distribution to National Coordinators for I O D E , National Océanographie Data Centres and other
interested parties such as W M O , E C O R , S C O R , highlighting new developments in G F 3 and including
an updated inventory of the documents, programmes, tapes, formats and code tables available.

vii) T o work closely with the Group of Experts on Technical Aspects of Data Exchange to ensure the
provision of expert knowledge on formats to other centres including World Data Centres-A and - B (all
disciplines) and subsidiary bodies of W M O , I O C and other international organizations and in the
promotion of G F 3 as an exchange format. The provision of expert knowledge will be ensured in fields
covering :

a) guidance in the uses of G F 3 ;

b) assistance to developing countries, including the development of national formats
compatible with G F 3 ;

c) assistance to developing data centres and countries, in collaboration with other R N O D C S ,
in converting data into G F 3 .

Enquiries concerning these services should be addressed to :

R N O D C (Formats),
ICES Service Hydrographique,
Palaegade 2-4,
DK-1261 Copenhagen K ,
DENMARK.

Requests for technical advice and guidance on the use of G F 3 and GF3-Proc should be addressed to :

British Océanographie Data Centre,
Proudman Océanographie Laboratory,
Bidston Observatory,
Birkenhead, Merseyside, L43 7 R A
UNITED KINGDOM.

The documentation for the G F 3 system is published in I O C Manuals and Guides N o . 17 in six separate
volumes under the title ' G F 3 - A General Formatting System for Geo-Referenced Data'.

Volume 1 : 'Introductory Guide to the G F 3 Formatting System' is intended to familiarize the new user with
the purpose and scope of the G F 3 system without overburdening him with technical detail. A n
introduction is provided, illustrated by examples, both to the G F 3 format and to its supporting software
package GF3-Proc.

Volume 2 : 'Technical Description of the G F 3 Format and Code Tables' contains a detailed technical
specification of the G F 3 format and its associated code tables.

Volume 3 : 'Standard Subsets of the G F 3 Format' contains a description of standard subsets of the G F 3
format tailored to a range of different types of data. It also serves as a set of worked-up examples
illustrating h o w the G F 3 format may be used.

Volume 4 (this volume) : 'User Guide to the GF3-Proc Software' provides an overview of GF3-Proc
explaining what it does, h o w it works and how it is used. It also provides an introduction to the
subroutine calls in the user interface to the package.

Volume 5 : 'Reference Manual for the GF3-Proc Software' contains a detailed specification of each G F 3 -
Proc subroutine callable from the user's program and provides detailed instruction on h o w and when
these routines may be used.

Volume 6 : 'Quick Reference Sheets for G F 3 and GF3-Proc' contains quick and easy reference sheets to the
G F 3 format and the GF3-Proc software.

- n -

CONTENTS

SECTION 1 : AN INTRODUCTION TO GF3-PROC

1.1 The Key Features of GF3-Proc

1.2 Programming Environment of GF3-Proc

1.3 The GF3-Proc User Interface

1.4 Programming Benefits of GF3-Proc

1.5 GF3-Proc Portability

SECTION 2 : THE CONCEPTS OF GF3-PROC

2.1 Introduction

2.2 The Concepts of GF3-Proc Input and Output

2.3 The GF3-Proc 'Automatic Processor'

2.4 Reading and Writing G F 3 'User-Defined Areas

SECTION 3 : THE GF3-PROC USER INTERFACE

3.1 Introduction

3.2 GF3-Proc Package Control

3.3 GF3-Pfoc Input/Output Units

3.4 G F 3 File Handling Routines

3.5 G F 3 Record Handling Routines

3.6 G F 3 Fixed Field Handling Routines

3.7 G F 3 Cycle Handling Routines

3.8 G F 3 Parameter Handling Routines

3.9 Special Utility Routines

3.10 GF3-Proc Error Reporting

- iii -

THE LEVEL 4 RELEASE OF GF3-PROC

T w o versions of GF3-Proc are currently maintained by the British Océanographie Data Centre
(B O D C) on behalf of I O C , viz. Level 3 and Level 4 :

Level 3 is a Fortran 66 version designed to run on machines which use internal
character codes other than ASCII or E B C D I C or do not have a Fortran 77 compiler.

Level 4 is a Fortran 77 version designed to run on machines which have either
ASCII or E B C D I C internal character code and a Fortran 77 compiler. Level 4 is
both more compact and more efficient than Level 3 and it is therefore strongly
recommended that Level 4 be installed on machines that are capable of running it.

This volume is tailored specifically for GF3-Proc Level 4. Whilst the User-Interface is broadly
similar for both versions of GF3-Proc there are a number of small but significant differences
of detail - these relate primarily to the different approaches available for handling character
variables in Fortran 66 and Fortran 77. It is therefore recommended that this volume should
only be used in conjunction with the GF3-Proc Level 4 software. A separate Users' Guide for
GF3-Proc Level 3 is available from B O D C .

ACKNOWLEDGEMENTS

The design and technical specification of the G F 3 format were prepared by Meirion T . Jones of the British
Océanographie Data Centre, working in close collaboration with the I O D E Group of Experts on Technical
Aspects of Data Exchange.

The design, coding and testing of the GF3-Proc software is the result of the combined efforts of two
computer experts, Roy K . Lowry and Trevor Sankey of the British Océanographie Data Centre. It involved
approximately 15 man-months of effort over a two-year period between 1983 and 1985. The work was
carried out under the direction of Meirion T . Jones and in close collaboration with the I O D E Group of
Experts on Technical Aspects of Data Exchange.

- IV -

SECTION 1

AN INTRODUCTION TO GF3-PROC

1.1 THE KEY FEATURES OF GF3-PROC

GF3-Proc is a suite of Fortran subroutines which provide

the Fortran programmer with a simple and yet complete

software interface for reading and writing data in the

G F 3 format. T h e package has been designed to exploit

the full flexibility of G F 3 and to relieve the user of m u c h

of the detailed coding that would otherwise be necessary

to read or write a G F 3 tape. A great deal of inbuilt

intelligence is contained within the package and it has

been constructed to a high technical specification.

The GF3-Proc software includes an extensive level of

error checking to ensure that tapes written using the

package conform as closely as possible to the record

sequencing and formatting rules of the G F 3 system.

These checks m a y also be applied to detect errors on an

incoming G F 3 tape before it is read and processed into

the user's o w n system.

O n e of the most important aspects of GF3-Proc is its

ability to read and automatically analyse G F 3 definition

records and to use the knowledge gained to automatically

control the reading and writing of data in the 'user-

defined areas' of G F 3 . The 'user-defined areas' of the

G F 3 series header and data cycle records are the main

data holding areas of G F 3 . GF3-Proc provides the user

with a simple interface for reading and writing data in

these areas without the need to be concerned with the

mapping of the data into G F 3 records - GF3-Proc deals

with this automatically.

GF3-Proc is designed to be portable across a wide range

of different computer systems. This portability is intended

not only to ensure the availability of the package to a

wide user community, but also to provide the user with

the insurance that his G F 3 orientated software can be

migrated to a new machine with min imum inconvenience.

W h e r e the user has a choice of different machines at his

disposal, the portability enables him to select the machine

most appropriate to his work or to spread his G F 3

capability over a number of different machines.

Most of the design features of GF3-Proc are directed at

maximising programmer productivity. However, as it is

anticipated that high data volumes will be passed through

the package, particular attention was also paid in its

design to making it efficient in terms of machine

utilisation. T h e highly active elements in the package's

code have been designed to be as machine efficient as

possible. The tape input/output of G F 3 records is carried

out by GF3-Proc through a single 1920 byte unformatted

read/write instruction. T h e mapping of data between G F 3

records and the user's program is handled in an internal

GF3-Proc "record buffer" using specially tailored G F 3 -

Proc routines without recourse to Fortran

binary/character conversion statements.

G F 3 was designed to be flexible enough to accommodate

a wide range of different types of data and to enable all

the necessary information to interpret and understand the

contents of the tape to be included on the tape itself.

Furthermore, the self-defining elements of the format

were designed in such a way that they could be

processed automatically - GF3-Proc n o w provides this

automatic processing capability. Although conceived

originally as a data exchange format, the very design

features of G F 3 m e a n that it is also well suited for use

as an archive format, particularly for multi-disciplinary

data sets. The availability of GF3-Proc complements the

use of G F 3 in this role by providing a ready m a d e user

interface to the archived data. Furthermore, the interface

can be migrated from machine to machine, together with

the data archive.

1.2 P R O G R A M M I N G ENVIRONMENT OF GF3-
PROC

GF3-Proc consists of some 11,000 lines of Fortran code,

of which about 5 0 % is m a d e up of inline comments. The

code is sub-divided into approximately 165 sub-routines -

the exact figures vary depending on the machine on

which the package is installed. The code is written for

use with Fortran 77 compilers on hosF machines with

either ASCII or E B C D I C as their internal code.

The GF3-Proc sub-routines form an interface between

the user's Fortran program and the G F 3 tape. Although

the user program has complete procedural control over

the operation of GF3-Proc, all instructions that actually

read from, or write to, the tape are carried out from

within GF3-Proc itself, i.e. the user program does not

communicate directly with the G F 3 tape. Only about 50

of GF3-Proc's sub-routines m a y be called directly from

the user's Fortran program - these routines constitute the

GF3-Proc User Interface. The remaining 100 or so

routines operate from within GF3-Proc and are

transparent to the user program.

GF3-Proc makes extensive internal use of labelled
c o m m o n areas for communicating data and control
information between its various sub-routines. However,
the user is not given direct access to these areas. T h e
communication of all data and control information
between GF3-Proc and the user's Fortran program is
carried out through arguments in the calls to the User
Interface routines. For the 50 or so sub-routines that
constitute the GF3-Proc User Interface there are a total
of about 30 different arguments with which the user has
to become familiar. O n average, each sub-routine has
two arguments; one supplied by the user program and
the other returned to the user program by GF3-Proc.
T h e m a x i m u m number of arguments in any one routine
is five.

Numeric data m a y be passed between GF3-Proc and the
user program, either in the form of a floating point
variable or an integer variable, depending on which is
more convenient for the user program - GF3-Proc
carries out any conversion that might be necessary. Thus,
for example, if GF3-Proc retrieves a data field stored in
a G F 3 record as an integer with an implied decimal point
but the user requires that field in floating point form,
GF3-Proc will automatically set up the value as a floating
point variable before returning it to the user program.
Character information is passed between GF3-Proc and
the user program through character variables.

error. If the error is the result of an inappropriate call
from the user program or the action requested is not
acceptable to GF3-Proc, either because it is
unrecognisable or because it is likely to corrupt further
processing, then GF3-Proc will normally abort the user
program.

The core requirement of typical user programs calling
GF3-Proc to read, write or manipulate G F 3 tapes is of
the order of 25k words - the exact requirement depends
on the user's processing of the data before or after it is
passed through GF3-Proc.

1.3 T H E G F 3 - P R O C U S E R INTERFACE

The 50 or so sub-routines of the GF3-Proc User
Interface are designed to be closely related to the
structure of the G F 3 format. In as m u c h as the G F 3
record is the central element of the G F 3 format, the
GF3-Proc "record buffer" is at the centre of GF3-Proc
processing. The "record buffer" is an area in GF3-Proc's
labelled c o m m o n which is designed to hold a single G F 3
record. GF3-Proc processing is fundamentally concerned
with reading data into the buffer, manipulating data
within the buffer or writing out the buffer.

The User Interface routines m a y be classified into eight
separate catagories:

USER'S
FORTRAN
PROGRAM

Calls to GF3-PROC User
Interface Routines

GF3-PROC
Error Report

: c

USER'S O W N
DATA FILES

• GF3-PROC

GF3-PROC User
Interface Routines

GF3-PROC
Internal
Routines

! GF3 Record Buffer !
GF3 FILES

& RECORDS

JUL"

T h e GF3-Proc software includes about 180 error traps -
if any of these are triggered an appropriate message is
automatically generated in a standard format on the
GF3-Proc error report file. All error messages are fully
documented in the GF3-Proc Reference Manual where
information is also provided on the likely cause of each

a) Package control routines: these are special purpose
routines that enable the user to control the way in
which GF3-Proc is to operate. There is a routine
to initialise GF3-Proc processing while other routines
enable the user to specify, for example, the Fortran
logical unit number on which GF3-Proc is to output
its error message file.

b) I /O unit control routines: these enable the user to
specify the characteristics of the I /O units on which
GF3-Proc is to read or write G F 3 records, e.g. the
Fortran logical unit number of the unit, the
character code (i.e. ASCII or E B C D I C) in which
G F 3 records are stored on the unit etc.

c) File handling routines: these enable the user to
manipulate complete G F 3 files. Routines are
included to read (i.e. skip) or copy any number of
files, to write an end of file mark, or to
automatically generate a complete test file or an end
of tape file by a single user call.

d) Record handling routines: GF3-Proc processes one
G F 3 record at a time and the current record is held
in the "record buffer". Routines are provided to
read the next record into the buffer from an input
unit, to write out the record in the buffer to an

- 2 -

output unit or to copy a record through the buffer
(i.e. read it in from an input unit and then write it
out to the output unit). A special routine is
available to validate the contents of the entire
record in the "record buffer" against the G F 3
technical specification for its record type - checking,
for example, that all fields are correctly formatted,
that they contain plausible entries, that mandatory
fields are present etc. Another routine m a y be
called to initialise the "record buffer" with a
predefined skeleton appropriate to the G F 3 record
type being created by the user, e.g. prefilling line
sequence numbers and record I D fields.

Fixed field handling routines: O n c e a G F 3 record
has been read into the "record buffer" routines are
available to extract specified fields out of the 'fixed
format area' of the record and into the user
program. Each fixed format field in G F 3 is known
to GF3-Proc by a unique identifier - the user simply
supplies that identifier and GF3-Proc returns the
value of the field to the user program. Similarly,
once a record has been initialised in the buffer,
routines are available to enable the user to set up
fields in the record by supplying the identifier of
each field and its corresponding field value.

Cycle handling routines: These routines provide the
interface to data held in the 'user-defined area' of
series header or data cycle records. Information on
the formatting and content of the 'user-defined
areas' is automatically picked up, analysed and
stored by GF3-Proc as the definition records pass
through the "record buffer". GF3-Proc closely
monitors the various definition records and is able
to automatically retrieve from its store the definition
appropriate to the 'user-defined area' currently
being read or written by the user program. Data in
these areas are manipulated by the user through a
special 'cycle buffer' maintained by GF3-Proc. At
any given time the 'cycle buffer' will contain the
header parameters of the 'user-defined area'
(referred to as the header cycle) or the current data
cycle. T h e cycle handling routines enable the user
to read in the next cycle into the 'cycle buffer' or to
write out the cycle buffer to the G F 3 output - the
mapping of the cycles to and from G F 3 records is
handled automatically by GF3-Proc and need not be
considered by the user program.

parameter code or by the sequential position of the
parameter in the appropriate definition record.
Analogous routines are available to enable the user
program to set up parameter values in the 'cycle
buffer'. It should be noted that as parameter values
are passed between the user program and the 'cycle
buffer' GF3-Proc automatically applies the scaling
factors appropriate to the parameter (as defined in
the definition record) and converts numeric values
into the appropriate format, i.e. floating point or
integer. If, in writing cycles, a parameter value is
missing, the user simply omits to pass a value to
GF3-Proc -GF3-Proc then automatically inserts the
d u m m y value appropriate for the parameter.

h) Special utility routines: this is a small collection of
miscellaneous routines providing utility functions
that the user might find useful w h e n preparing or
reading data in G F 3 .

1.4 P R O G R A M M I N G BENEFITS OF GF3-PROC

By providing a high level interface to G F 3 , GF3-Proc
relieves the programmer of most of the G F 3 orientated
coding that would otherwise occupy m u c h of his
program. In converting data between G F 3 and the
formats of the user's o w n files, the bulk of the user's
GF3-Proc program will normally be concerned with
coding against the user's o w n formats rather than against
G F 3 .

GF3-Proc isolates the user from many of the technical
details of G F 3 , for example:

a) GF3-Proc automatically handles the next record byte
and the series header continuation flag - both of
which require knowledge of what is to follow before
they can be set.

b) GF3-Proc automatically handles the data cycle
accounting fields in the series header and data cycle
records.

c) In handling 'user-defined areas' the user need only
be concerned with cycles and parameters - G F 3 -
Proc looks after their mapping, scaling and
formatting into G F 3 records and their overflow onto
succeeding records, as required.

Parameter handling routines: O n c e a cycle has
been read into the "cycle buffer" a routine is
available to inform the user program whether it is
a header cycle or a data cycle. Further routines
enable the values of specified parameters to be read
out of the cycle and into the user program - the
parameters m a y be idenfified either by their G F 3

d) W h e n data cycles overflow the 'user-defined area' of
the series header record, GF3-Proc automatically
sets u p the fixed format part (i.e. first 400 bytes) of
the continuation series header records.

e) T h e user need not be concerned about coding for
the detailed structure of G F 3 records - he need

- 3 -

only k n o w the individual field identifiers, the units

of the fields and whether they are stored in numeric

or character form - in the latter case awareness o f

field length is also required.

f) T h e user handles character information in the

internal code of his Fortran compiler i.e. A S C I I or

E B C D I C - G F 3 - P r o c automatically looks after its

transliteration to or f rom the G F 3 tape if conversion

between ASCII and E B C D I C is required.

g) In creating G F 3 records many fields can be

initialised by a single call to the User Interface.

h) etc.

Although GF3-Proc is designed to handle most of the

features of G F 3 automatically, the option is usually

available for the user to exercise his own control over

these features if he so wishes. In this sense, GF3-Proc

is flexible to user requirements and allows the user as

m u c h control as he requires.

B y substantially reducing the code the programmer has

to write GF3-Proc thereby minimises the number of

mistakes that might otherwise be m a d e in writing a G F 3

tape.

The level of checking built into GF3-Proc far exceeds

that which would be cost-effective to write in a one-off

G F 3 program. This means that programs using the

package m a y be written quickly, but to a high

specification.

Although magnetic tape is the normal medium on which

G F 3 data is stored, GF3-Proc also allows G F 3 records to

be read to, or written from, disk files. This provides a

means of assembling G F 3 files prior to their transfer to

tape. It also enables programs to be developed and

tested interactively without the inevitable delays

associated with tape mounting in a batch environment.

Once the program has reached operational status,

input/output can be easily switched from disk to tape

simply by modifying a couple of calls in the user

program.

GF3-Proc stores G F 3 records on disk in a form

particularly suited for manipulation by, for example, text

editors. O n e or more G F 3 records may, if required, be

prepared and edited on disk before being read into G F 3 -

Proc for incorporating into G F 3 tapes. This technique is

particularly useful for preparing definition records which

can then be read through GF3-Proc in order to check

for errors. The technique m a y be used to either read in

complete records or to read in partially completed

records which m a y then be completed by the user's G F 3 -

Proc program before being written out - it is particularly

useful for preparing text information to be inserted into

plain language records. A s far as the user program is

concerned, G F 3 records can be read in from disk files in

an identical fashion to their input from tape and G F 3

records can be merged from different input streams.

GF3-Proc also allows G F 3 records to be output to a

printer as an alternative to tape output during the

development of programs to write G F 3 tapes - once

development is complete it is a simple matter to switch

the output to tape.

1.5 GF3-PROC PORTABILITY

The Level 4 version of GF3-Proc is a Fortran 77

implementation designed for an environment where G F 3

tapes are coded in either ASCII or E B C D I C . The host

computer must have either ASCII or E B C D I C for its

internal code, 6 significant figure floating point precision

and at least 32 bits assigned to variables declared as

I N T E G E R . Within these constraints it is estimated that

about 99% of the GF3-Proc code is fully portable and

that only about 1% of the code need be adapted to the

particular characteristics of the machine on which it is

installed - such characteristics include tape input/output

specifics and program abort and traceback facilities.

Those items of the GF3-Proc code that are dependent

on such characteristics have been clearly isolated within

the package design so as to facilitate their modification.

Experience on installing the package on a range of

machines of I B M , Honeywell, G E C , Norsk Data, N E C ,

Univac, Sun, Data General, D E C and C D C manufacture

has shown that only a couple of m a n days of effort are

required at B O D C to adapt the package for each new

system. It should be noted that the modifications are

carried out within the internal code of GF3-Proc and do

not affect the User Interface to GF3-Proc which is

designed to be totally portable.

Programming note:

GF3-Proc does not communicate with the user program

through labelled c o m m o n areas, nor does it make use of

blank c o m m o n . Most Fortran compilers will not insist on

the declaration of the GF3-Proc labelled c o m m o n areas

in the user's mainline program. However, if such a

declaration is required, a file of all relevant c o m m o n

statements is available with GF3-Proc for inclusion in the

user program.

- 4 -

SECTION 2

THE CONCEPTS

2.1 I N T R O D U C T I O N

GF3-Proc provides the user with 50 or so Fortran
routines that can be called directly from the user's
program in order to process, read and write G F 3
formatted data. The routines are designed to be closely
related to the structure of the G F 3 format and to give
the user procedural control over the handling of G F 3
files, records, cycles and fields. Use of the package
therefore assumes that the user has a basic
understanding of the concepts and technical details of
G F 3 as described in "The Technical Specification of G F 3
and its Code Tables' (Volume 2 of I O C Manuals and
Guides N o . 17).

2.2 THE CONCEPTS OF GF3-PROC INPUT
A N ^ OUTPUT

Within the user's GF3-Proc program there are two types
of operation for the input and output of data - those
that deal with records from the user's o w n files and
those that deal with G F 3 records. T h e former are of no
concern to GF3-Proc and are manipulated by the user
program using conventional Fortran read and write
statements. However, the contents of G F 3 records can
only be passed to or from the user program through
arguments in calls to the GF3-Proc User Interface
routines. Although the user initiates the reading and
writing of these records by calls to the User Interface
routines, the software that actually carries out the input
and output of G F 3 records is embedded deep within the
internal structure of GF3-Proc in what are termed G F 3 -
Proc I/O Units.

Each GF3-Proc I /O Unit is assigned to a single G F 3
storage unit which m a y be an input tape, an output tape,
an input disk file, an output disk file or a printer output
file. U p to 5 individual GF3-Proc I/O Units m a y be
assigned within the user program at any given time.
Before any particular GF3-Proc I/O Unit can be
activated to read or write G F 3 records, the user must
first of all define the properties of the Unit stating, for
example, whether it is an input or output Unit, whether
it is directed at tape, disk or the printer, the character
code in which it operates (i.e. A S C I I or E B C D I C) and
its Fortran logical unit number. A s GF3-Proc allows a
number of different input and output GF3-Proc I /O
Units in the same program, it should be noted that

OF GF3-PROC

whenever an input or output operation is to take place,
the user must identify to GF3-Proc which input Unit is
to be recognised as the 'current input unit' or, on
output, which output Unit is to be the 'current output
unit'. Each G F 3 storage unit is identified within G F 3 -
Proc by a special identifier.

All input and output operations in GF3-Proc are centred
around a 1920 byte area within internal storage (in one
of GF3-Proc's labelled c o m m o n areas) called the "record
buffer" which at any given time will contain the contents
of a single G F 3 record. T h e function of an input G F 3 -
Proc I /O Unit is to bring G F 3 records, on a record by
record basis, from the assigned input device to the
"record buffer", while an output GF3-Proc I/O Unit
takes the G F 3 record held in the "record buffer" and
writes it to the appropriate output device. During the
moving of records to or from the "record buffer" the
GF3-Proc I/O Unit will also carry out any character code
conversion that is required. Thus, for example, in
reading from an E B C D I C input tape the input Unit will,
if necessary, convert the contents of the input record into
ASCII before moving them into the "record buffer" if the
host machine operates in ASCII . It should be noted that
if GF3-Proc is instructed to copy G F 3 records or files
from an input device to an output device, each G F 3
record in turn will be moved through the "record buffer".

T h e GF3-Proc "record buffer" forms the G F 3 data
interface between GF3-Proc and the user program -
thus, once a GF3-Proc I /O Unit has read a G F 3 record
into the "record buffer", user interface routines are
available to transfer G F 3 fields from the record into the
user program. Conversely, user interface routines are
also available to transfer data fields from the user
program to the "record buffer" in order to create a G F 3
record - once the record is complete the output G F 3 -
Proc I/O Unit can then be called to write the contents of
the "record buffer" to the output device. The user
program communicates with the "record buffer" on a
field by field basis and the user need not be concerned
about which character positions each G F 3 field occupies
within the G F 3 record - this is handled for him by G F 3 -
Proc. Each field in each record type has a specific
identifier and the values of individual fields are passed
between the user program and the "record buffer" as
arguments in calls to the GF3-Proc User Interface
routines. Not only does GF3-Proc look after the
positioning of G F 3 fields within G F 3 records, it also
assists with the correct formatting of each field - thus, for

- 5

example, the user can pass a field to GF3-Proc in
floating point form and, if necessary, GF3-Proc will
convert that field into integer form with an implied
decimal point before setting it up in the G F 3 record held
in the "record buffer".

2.3 THE GF3-PROC 'AUTOMATIC PRO­
CESSOR'

T h e GF3-Proc 'Automatic Processor' is one of the most
powerful features of the GF3-Proc package and can be
activated to introduce a sophisticated level of automatic
processing/checking into the data path between the
"record buffer" and a GF3-Proc I /O Unit. O n c e
activated, it automatically performs the following tasks:

a) Record sequence checking

b) Record content checking (may be switched off)

c) Definition record analysis

d) 'Next record type' field updating

e) Support for automatic cycle processing

Within the user program the 'Automatic Processor' m a y
only be activated on one user nominated input GF3-Proc
I/O Unit and one user nominated output GF3-Proc I /O
Unit. T h e 'Automatic Processor' exercises its control on
the input data path independently of the output data
path and vice versa. T h e following operations are carried
out separately on the nominated input and output path:

a) Record sequence checking: the sequence of records
passing into (or out of) the "record buffer" is
monitored and checked against the record
sequencing rules of G F 3 - any deviation from the
allowed sequence results in the generation of an
error message on GF3-Proc's error report.
Sequence checking starts with the first record read
(written) after switching on the 'Automatic
Processor' - each subsequent record is then checked
against its immediate predecessor to ensure that it
is one of the allowed record types to follow that
record and conforms to the record type identified in
the 'next record type' byte. It also checks the
validity of the data accounting fields (i.e. first 20
bytes) in data cycle records and the correct usage of
the series header continuation flag.

b) Record content checking: as each G F 3 record is
passed into (or out of) the "record buffer" it is
subjected to a range of data content and formatting
checks. T h e checks vary depending on the G F 3
record type and are designed to ensure that the

field entries in the record conform as closely as
possible to the specifications of G F 3 . For example;
mandatory fields are checked for the presence of a
valid entry; date, time, latitude and longitude fields
are checked for correct syntax (assuming they are
not blank or 9's filled); count fields are checked to
be positive; line sequence numbers are checked to
be in contiguous sequence; unassigned fields are
checked for the presence of blanks etc. etc. W h e r e
relevant, internal consistency checks are also
undertaken between fields, e.g. checking that end
date/times do not c o m e before the corresponding
start date/times. Whenever an error is detected, an
appropriate error message is written to GF3-Proc's
error report. It should be noted that the record
content checks do not cover the 'user-defined areas'
of G F 3 records, nor do they cover definition records
- the latter are dealt with separately (see below).
Record content checking can be suppressed by the
user program, if required.

c) Definition record analysis: as definition records are
m o v e d through the "record buffer", either on input
or on output, they are automatically picked up by
a 'definition record analyser' which subjects them to
a rigorous analysis and validation and converts them
into a computationally convenient format for
internal storage. T h e 'definition record analyser' is
one of the key features of the GF3-Proc software
and provides the mapping information necessary for
the automatic reading/writing of data within the
'user-defined areas' of G F 3 records. It constructs
its mapping by reconciling the Fortran format
statement in the definition record with the
specifications given for each defined parameter.
T h e Fortran format first undergoes a rigorous
syntax check which is followed by a rigorous
compatibility check between the various field
elements in the format statement and the field
specifications given for each parameter. T h e latter
are also checked separately to ensure, for example,
that d u m m y values fall within the prescribed field
width, that scaling factors are provided for numeric
fields, etc. If any errors are detected during
definition record analysis they are reported in the
GF3-Proc error report and the program is aborted.

It should be noted that all the user program has to
do to process definition records for use in the
reading (or writing) of data in the 'user-defined
areas' of G F 3 records is simply to m o v e the
definition record(s) through the "record buffer" with
the 'Automatic Processor' switched on - the
'definition record analyser' does the rest. The
'definition record analyser' maintains an internal
storage area (approximately 2.5k words) in G F 3 -
Proc with reserved space for the analysed output of

ten definition records (including their continuation
records) -five for input and five for output. T h e
five correspond to the data cycle definition records
at tape, file and series level and series header
definition records at tape and file level.

A s definition records are passed through the "record
buffer" the 'definition record analyser' determines
whether they are at tape, file or series level;
whether they are series header definition records or
data cycle definition records; and whether they are
for reading or writing; and stores them in the
appropriate location in its analysed definition record
storage area. Entries for the file and series level
definition records are deleted automatically w h e n
the file or series to which they refer has completely
passed through the "record buffer". This enables
n e w file or series level definitions to be inserted and
protects against an obsolete definition being picked
up for automatic data processing.

In addition to its analysed output the 'definition
record analyser' also stores the parameter codes,
discriminators, d u m m y value, format type and
scaling factors associated with each parameter. T h e
definition record storage area can accommodate a
total of up to 500 individual parameters, i.e. an
average of 50 parameters per definition record
(including its associated continuation record(s)). A s
the storage space reserved for each definition record
is dynamically allocated, the m a x i m u m n u m b e r of
parameters allowed for a given definition record is
dependent on h o w m a n y parameters are included
on the other definition records.

'Next record type' field updating: as G F 3 records
are written from the "record buffer" for output, the
'next record type' byte is automatically set to the
value of the following record. In order to achieve
this, the 'Automatic Processor' holds the record
temporarily in a secondary buffer before it is written
to the output device.

Support for 'automatic cycle processing': switching
on the 'Automatic Processor' also enables the
'automatic cycle processing' routines (see below) -
these routines provide the user with the ability to
read/write data in the 'user-defined areas' of the
series header and data cycle records. O n output
the 'Automatic Processor' supports these routines
by automatically updating i) the accounting fields in
the data cycle record and ii) the continuation flag in
the series header record.

2.4 READING A N D WRITING GF3 'USER-
DEFINED AREAS'

O n e of the virtues of the G F 3 format is its ability to
store data in a user-defined manner in the series header
record (last 1520 bytes) and the data cycle record (last
1900 bytes) and to describe these areas through
definition records. Not only does GF3-Proc provide an
automatic facility to analyse and interpret the definition
records, it also includes a set of user callable routines
('automatic cycle processing' routines) that provide a
complete software interface for reading and writing data
in the 'user-defined areas'.

(Technical note: Within each 'user-defined area', whether
it be in the series header record or the data cycle record,
there are two types of field - header parameters and data
cycle parameters. T h e structure of the 'user-defined
area' follows a fixed pattern - the header parameters are
grouped at the start of the area and are followed by the
data cycle parameters grouped into a data cycle - the
data cycles are then repeated until the user-defined area
is filled or the data has ended. G F 3 - P r o c refers to the
grouping of header parameters as a header cycle.
Through its 'automatic cycle processing' routines, G F 3 -
Proc treats header cycles in an analogous fashion to data
cycles, and the generic term 'cycle' is therefore
introduced to cover both parameter groups. T h e user-
defined area m a y contain only a header cycle, or only
data cycles, or a combination of both - GF3-Proc is
generalised to cover all three cases).

For fixed format G F 3 records G F 3 - P r o c provides a clean
and simple interface with the user program - the user
program has procedural control over the reading and
writing of G F 3 records between the "record buffer" and
the I/O devices, and user callable routines are available
to read/write specified data fields between the "record
buffer" and the user program. W h e n it comes to G F 3
'user-defined areas' the user ideally requires the facility
to handle data at the cycle level rather than the record
level, and for the system to take care of the mapping of
cycles to and from records. G F 3 - P r o c provides this
facility through its 'automatic cycle processing' routines -
these routines are user callable and based on the concept
of a 'cycle buffer'. T h e routines enable the user to read
and write G F 3 cycles in an analogous fashion to the
reading and writing of G F 3 records.

(Terminology note: In order to distinguish between data
items in the fixed format part of G F 3 records and those
in the 'user-defined areas' the former are referred to as
'fields'; the latter as 'parameters'. Thus, in record
processing one deals with fields, in cycle processing one
deals with parameters).

With G F 3 record reading the user program can 'get' the
next G F 3 record in the input stream into the "record
buffer", ascertain its record type, and then extract data
out of the record on a field by field basis by calls
involving each field identifier in turn. Similarly, with G F 3
cycle reading the user program can 'get' the next G F 3
cycle in the input stream into the 'cycle buffer', ascertain
whether it is a header cycle or a data cycle, and then
extract data out of the cycle on a parameter by
parameter basis by calls involving each parameter
identifier in turn. T h e parameter identifier can be either
the G F 3 parameter code or the sequence n u m b e r of that
parameter in the relevant definition record. It should be
noted that, in extracting out parameter values from the
cycle, GF3-Proc automatically applies the scaling factors
appropriate to the parameter (as specified in the
definition record). It also returns a simple on/off flag to
indicate whether the parameter value is present or absent
(i.e. set to its d u m m y value) - this saves the user from
having to be concerned with processing d u m m y values.

T h e analogy between cycle writing and record writing is
very similar to that between cycle reading and record
reading, as described above. In constructing a cycle in
the 'cycle buffer' the user supplies each parameter value
in turn through an 'automatic cycle processing' routine -
GF3-Proc automatically applies the parameter scaling
factors before writing the cycle. If a parameter value is
absent then the user simply omits the call to set up the
value in the 'cycle buffer' - before the cycle is written out
GF3-Proc checks for missing parameter values and sets
them to their appropriate d u m m y values.

T h e 'automatic cycle processing' routines enable the user
to read and write cycles without needing to be concerned
about G F 3 record boundaries and the reading and
writing of G F 3 records. O n c e the input file has been
positioned at the start of the 'user-defined area' and
before starting to read cycles, the user is first required to
issue a call to 'open' cycle reading - this is to enable
G F 3 - P r o c to establish links to the appropriate definition
record held in its internal storage. T h e user m a y then
issue a call to the appropriate 'automatic cycle
processing' routine tö read in the next cycle - GF3-Proc
responds by making the next cycle in the 'user-defined
area' of the G F 3 record in the "record buffer", available
to the user program through the 'cycle buffer'. This
process m a y then be repeated with GF3-Proc successively
reading cycles out of the 'user-defined area'. W h e n the
last cycle in the record has been read GF3-Proc will
automatically input the next G F 3 record in the input
stream into the "record buffer" and continue to m a k e
cycles available in response to the user call, reading in

the further G F 3 records as and w h e n required. W h e n
the cycles have been exhausted G F 3 - P r o c returns an 'end
of data' condition to the user program. T h e user then
issues a call to 'close' cycle reading before continuing
with the next G F 3 record in the input stream.

Similar principles apply to the writing of cycles in 'user-
defined areas'. T h e user first 'opens' cycle writing and,
if necessary, creates and writes a header cycle through
the 'cycle buffer' - he then proceeds with writing data
cycles. GF3-Proc responds by setting up the cycles it
receives through the 'cycle buffer' into the "record
buffer". O n c e the G F 3 record in the "record buffer" is
full GF3-Proc automatically writes the record to the
output stream and initialises the next record to be set up
in the "record buffer". It then returns to continue
picking up data cycles from the 'cycle buffer'. If the user
wishes to change any of the values in the header cycle at
any stage, a routine is available to enable the user to
write out the current record being set up in the "record
buffer" with the unfilled cycles automatically padded out
with blanks. T h e "record buffer" is then clear to enable
the user to write out the revised header cycle through
the 'cycle buffer' into the next G F 3 record.

W h e n writing to the 'user-defined area' of a series
header record, the user first sets up the first 400 bytes
(i.e. the fixed format part) of the record in the "record
buffer" using GF3-Proc's fixed field handling routines.
H e m a y then 'open' cycle writing and proceed with
setting up and writing cycles. A s GF3-Proc picks u p the
cycles from the 'cycle buffer' it will start filling up the
'user-defined area'. W h e n the 'user-defined area' is full,
or the cycles have finished, GF3-Proc automatically writes
the complete record to the output stream. If necessary,
GF3-Proc continues the cycles onto a continuation series
header record, including the setting up of the first 400
bytes of the continuation record - this is handled
automatically without the need for additional calls from
the user program.

Technical note: T h e 'cycle buffer' is only a logical
concept and, unlike the "record buffer" is not an actual
storage array within GF3-Proc. Input/output operations
on the 'cycle buffer' simply involve the manipulation of
pointers and storage associated with the "record buffer".
T h e system has been designed this way in order to avoid
the processing overhead that would otherwise be incurred
in copying data between the buffers. However, for ease
of understanding of the GF3-Proc User Interface, the
user m a y view the 'cycle buffer' as a real entity with its
o w n storage array.

- 8 -

SECTION 3

THE GF3-PROC USER INTERFACE

3.1 INTRODUCTION

This Section is intended to introduce the reader to the
various user-visible routines of the GF3-Proc User
Interface, and to outline the role and nature of each
routine. Detailed information on h o w and when each
routine m a y be used, together with a detailed description
of what each routine actually does, may be found in the
GF3-Proc Reference Manual (Volume 5 of I O C
Manuals and Guides N o . 17). Before using any G F 3 -
Proc routine the user is strongly recommended to read
carefully through the appropriate section of the
Reference Manual.

All GF3-Proc subroutines have six character names of
which the first two characters are always set to ' G F -
this convention applies not only to the routines of the
GF3-Proc User Interface but also to all of GF3-Proc's
internal re Jtines. It is important, therefore, that the user
should avoid naming any of his user created subroutines
according to this convention. The same convention also
applies to the naming of all of the labelled c o m m o n
areas within GF3-Proc.

Option switch 3 : The identifier of the current G F 3 -
Proc I /O Unit from which GF3-Proc
is to read G F 3 records (see 3.3.5)

Option switch 4 : The identifier of the current G F 3 -
Proc I/O Unit to which GF3-Proc is
to write G F 3 records (see 3.3.5)

Option switch 5 : The identifier of the GF3-Proc I/O
Unit whose descriptor is to be made
current - either so that the user
program can change the descriptor or
look up its contents (see 3.3.5)

Option switch 6 : This option is not required in G F 3 -
Proc Level 4

Option switch 7 : GF3-Proc normally aborts the user
program if it detects any errors - this
option switch m a y be used to prevent
GF3-Proc aborting when it encounters
non-fatal data errors, i.e. errors in the
data which do net affect the working
of GF3-Proc

3.2 GF3-PROC PACKAGE CONTROL

3.2.1 INITIALISING G F 3 - P R O C

The first task of any program using GF3-Proc is to call
the initialisation routine G F P R O C - this routine contains
no arguments and is used simply to initialise GF3-Proc
processing. It is called before any other GF3-Proc
routine.

3.2.2 PACKAGE CONTROL OPTIONS

Within GF3-Proc internal storage there is an array of
ten option switches which m a y be manipulated by the
user program to control the way in which the package
operates - they contain the following information:

Option switch 1 : The Fortran logical unit number on
which GF3-Proc is to write its error
messages

Option switch 2 : This option is not used in GF3-Proc
Level 4

Option switch 8 : This switch controls the action that
GF3-Proc is to take in the special
case of a G F 3 'user-defined area'
which contains only header parameters
but whose definition includes both
header and datacycle parameters

Option switch 9 : during 'automatic cycle writing' G F 3 -
Proc will normally automatically insert
appropriate d u m m y values for each
parameter which has not been given
a value - the user m a y prevent G F 3 -
Proc taking this action by
manipulating this option switch

Option switch 10 : during 'automatic cycle processing'
GF3-Proc will normally automatically
apply the scaling factors specified for
each parameter in the definition
record - such action can be prevented
by manipulating this option switch

Each option switch has a table of allowed values - these
are fully described in the GF3-Proc Reference Manual.

- 9 -

The user does not necessarily have to set up each of the
option switches explicitly from within the user program as
GF3-Proc has a system of default values. If the user
wishes to override the default value for a particular
option switch, he does so by a call to the subroutine
G F P C S T identifying the option switch and specifying the
value it is to take. The user will normally set up the
option switches at the beginning of GF3-Proc processing
but may modify them during the program by further calls
to G F P C S T . A subroutine G F P C L K is available if the
user wishes to examine the current value of any of the
option switches during the program.

3.3 GF3-PROC INPUT/OUTPUT UNITS

3.3.1 I N T R O D U C T I O N

A s described earlier (see 2.2) the GF3-Proc I/O Units
operate from within GF3-Proc and provide the software
to actually read or write G F 3 records. Each GF3-Proc
I/O Unit is assigned by the user program to a specific
input or output stream of G F 3 records which may reside
on magnetic tape, disk or a printer. In addition to
reading and writing G F 3 records, the GF3-Proc I/O
Units also carry out any E B C D I C / A S C I I transliteration
that is necessary between the character code in which
the G F 3 records are stored and the internal code of the
host machine. The GF3-Proc I/O Units act on a record
by record basis, feeding 1920 byte G F 3 records between
the input/output device and the "record buffer" according
to instructions issued by the user program through the
User Interface routines.

3.3.2 T A P E I N P U T / O U T P U T

Magnetic tape is the normal medium on which GF3-Proc
input/output operations are carried out. GF3-Proc I/O
Units read/write G F 3 records from/to tape using single
1920 byte unformatted Fortran read/write statements.
End of file marks are physically generated by GF3-Proc
using the Fortran Endfile statement.

G F 3 records are normally stored on tape in an
unblocked form, i.e. as single 1920 byte record blocks.
However, where data volume is a problem, there m a y be
a need to block more than one G F 3 record per physical
block. Such blocking is transparent to GF3-Proc in that
it always reads/writes 1920 byte logical records - any
blocking/ unblocking that needs to be carried out is
controlled through the user program Job Control
Language (JCL) and its interaction with the computer's
Operating System.

3.3.3 D I S K I N P U T / O U T P U T

GF3-Proc also supports sequential disk I/O of G F 3
records. In addition to supporting the archiving of G F 3
files on disk, GF3-Proc disk I/O also provides a test
environment for user program development, and a means
of manually constructing or editing individual G F 3
records, particularly definition records. It also provides a
means of assembling G F 3 files prior to their transfer to
tape.

In contrast to its handling of tape I/O, GF3-Proc I/O
Units read/write individual G F 3 records from/to disk as
24 lines, each in A 8 0 format. This is totally transparent
to the GF3-Proc user and does not constrain the
structure of 'user-defined areas' into 80 byte units. It
does, however, enable GF3-Proc disk output to be easily
manipulated by text editors etc. End of file marks are
logical (24 lines filled with 9s), not physical, to allow
'multi-file' G F 3 files to be held as a single physical disk
file.

3.3.4 PRINTER OUTPUT

GF3-Proc also enables G F 3 records and files to be listed
out on a printer as required. It produces printer output
of G F 3 records on a record by record basis in the same
format as disk output but with a carriage control
character at the beginning of each line. Printer output
also provides an invaluable alternative to tape output
during user program development - once development is
complete it is a simple matter to switch the output to
tape.

3.3.5 S E T T I N G U P A G F 3 - P R O C I/O U N I T

T w o routines are provided to enable the user to specify
the properties of each GF3-Proc I/O Unit that is to read
or write G F 3 records on behalf of user program. These
properties are stored in a special descriptor table held in
GF3-Proc internal storage - the table allows entries for
up to five separate GF3-Proc I/O Units.

A call to the initialisation routine G F U N C R alerts G F 3 -
Proc that the user wishes to set up a new GF3-Proc I/O
Unit. GF3-Proc responds by allocating the Unit a
unique identifier to be used in subsequent references to
that particular Unit by the user program.

The user is then in a position to define the properties of
the GF3-Proc I/O Unit by a series of calls to the routine
G F U N S T indicating:

i) whether it is for the input or output of G F 3 records

- 10 -

ii) whether the 'Automatic Processor' is to be activated
on the data path between the Unit and the "record
buffer" (see 2.3)

iii) if the 'Automatic Processor' is activated, whether its
automatic record content checks are to be
suppressed

iv) whether the Unit is for:

a) tape I /O, in which case the character code
(i.e. ASCII or E B C D I C) of the tape is also
specified

b) disk I/O, or

c) printer output, in which case the carriage
control character is also specified to enable
line or page skipping between individual G F 3
records

v) the Fortran logical unit number of the I/O unit
from/to which the GF3-Proc I/O Unit is to read or
write G F 3 records

vi) whether Fortran logical unit number skipping is
required. This facility is used solely in cases where
the operating system of the computer requires each
physical file read from or written to a magnetic tape
to be given a separate Fortran logical unit number
(e.g. as with some I B M systems). W h e n used, G F 3 -
Proc automatically increments the Fortran logical
unit number for the Unit by one whenever an end
of file mark is read or written.

The user does not necessarily have to specify each of the
properties explicitly as GF3-Proc operates a system of
defaults for all except i) and v). Under certain conditions
the user m a y change some of the properties at later
stages in the program by making further calls to the set
up routine G F U N S T - if at any stage of the program the
user wishes to check on the status of any of the
properties, a look up routine G F U N L K is available.

A special routine G F U N R L is available to enable the
user to release a GF3-Proc I / O Unit once it is finished
with - this routine is only used if the user wishes to work
with more than 5 GF3-Proc I/O Units in the same
program.

3.3.6 T H E C U R R E N C Y O F G F 3 - P R O C I/O U N I T S

GF3-Proc allows a number of different GF3-Proc I/O
Units to be used in the same user program for the
purpose of inputting G F 3 records - at any stage in the
program when a G F 3 record is to be read in, GF3-Proc

needs to know from which GF3-Proc I/O Unit it should
read that record. In fact, GF3-Proc will always take the
record from the GF3-Proc I/O Unit whose identifier is
stored in package control option switch 3 (see 3.2.2) i.e.
the 'current input unit'. It is up to the user to ensure
that this switch contains the identifier of the GF3-Proc
I /O Unit from which he wishes to read - if necessary by
calling the package control set up routine G F P C S T
(3.2.2). That Unit will then remain as the 'current input
unit' until a further call is m a d e to G F P C S T to switch
input to another GF3-Proc I /O Unit. A n analogous
mechanism exists for the output of data with the user
specifying the 'current output unit' in a similar fashion.
The same concept of currency is also used when the user
wishes to change or examine the properties of any of the
existing GF3-Proc I/O Units - the user then has to
identify the relevant GF3-Proc I /O Unit in package
control option switch 5 (see 3.2.2).

It should be noted that the user need only be concerned
with the concept of 'currency' if there is more than one
G F 3 input Unit, or more than one G F 3 output Unit, or
if it is required to change or look u p the properties of
these Units during the course of the program.

3.3.7 R E W I N D I N G A G F 3 - P R O C I/O U N I T

A special routine G F U N R W is available to enable the
user to rewind a GF3-Proc I /O Unit - this in effect
rewinds the G F 3 disk or tape file to the beginning. This
facility is provided in case the user wishes to do a check
scan on a tape that has just been written, or after a
preliminary scan of a G F 3 input tape prior to detailed
processing. Special rules apply to the use of this routine.

Note: From section 3.4 onwards the arguments
associated with each sub-routine call are
enclosed in parenthesis after the first reference
to that routine, in order that the reader m a y
more easily comprehend the information being
passed between the user program and G F 3 -
Proc

3.4 GF3 FILE HANDLING ROUTINES

3.4.1 READING AND COPYING FILES

GF3-Proc has two file handling routines to enable the
user to read or copy a specified number of G F 3 files on
a file by file basis. A s the files are moved by the G F 3 -
Proc I/O Unit(s) the G F 3 records are transliterated
(between E B C D I C and ASCII) as necessary and passed

- 11 -

through the GF3-Proc 'record buffer'. If automatic
processing and record content checking are switched on,
then each record will be subjected to record sequencing
and data checks, and any definition records encountered
will be passed automatically to the definition record
analyser. If an end of tape mark is encountered before
the specified number of data files have been read, then
control is passed back to the user program.

i) Routine G F F L R D (I C N T) - read one or more G F 3
files

This routine enables a user specified number
(I C N T) of G F 3 files to be read from the GF3-Proc
'current input unit'. Its main use is to position a
G F 3 input tape for further processing, e.g. to read
past previously processed data files. It can also be
used to skip the remaining portion of a G F 3 file
that is being read or, with a large enough file count,
to perform automatic processing checks on an entire
G F 3 tape.

ii) Routine G F F L C P (I C N T) - copy one or more G F 3
files

This routine enables a user specified number
(I C N T) of G F 3 files to be copied from the G F 3 -
Proc 'current input unit' to its 'current output unit'.
If the routine is called part way through processing
a file, the remainder of the file will be the first file
to be copied. T h e main use of this routine is to
assemble different G F 3 data files onto a single tape.
It m a y also be used to copy complete G F 3 tapes,
with or without modification depending on the
properties set up for the input and output G F 3 -
Proc I /O Units (see 3.3.5) - automatic processing
checks can also, if required, be activated for the
tape copying. This routine also provides a simple
and efficient way of converting G F 3 files or tapes
from E B C D I C to ASCII or vice versa.

3.4.2 WRITING AN E N D OF FILE M A R K

i) Routine GFEFWT - write an end of file mark

This routine is used to write an end of file mark on
the GF3-Proc 'current output unit'. W h e n the Unit
has automatic processing switched on, it is essential
that the user should not attempt to generate the
end of file mark from within the user program using
the Fortran ' E N D F I L E ' statement.

3.4.3 WRITING T H E TEST FILE A N D THE TAPE
TERMINATOR FILE

T w o special routines are available to enable the user to
automatically write a complete G F 3 test file or G F 3 tape
terminator file:

i) Routine G F X F W T - write the G F 3 test file

This routine writes a complete G F 3 test file to the
GF3-Proc 'current output unit'.

ii) Routine G F Z F W T - write the G F 3 tape terminator
file

This routine m a y be called to write a complete G F 3
tape terminator file to the GF3-Proc 'current output
unit'. It initialises and outputs a d u m m y file header
record and a G F 3 end of tape record followed by
two end of file marks. If the user wishes to insert
plain language comments in the G F 3 end of tape
record, he will need to create the G F 3 tape
terminator file using the record handling routines
described in section 3.5.

3.5 GF3 R E C O R D HANDLING ROUTINES

3.5.1 I N T R O D U C T I O N

As outlined earlier, GF3-Proc is based upon the concept
of a single internal "record buffer" which holds a single
G F 3 record and forms the data interface between G F 3 -
Proc and the user program. T h e GF3-Proc record
handling routines enable the user to read a record into
the buffer, ascertain the type of that record, write out
the buffer, copy a record, initialise the buffer and
validate it. The read, write and copy routines give the
user procedural control over the input and output of
G F 3 records to and from the "record buffer" through the
specified GF3-Proc I /O Unit(s) and provide the basic
method of user interaction with G F 3 input and/or output
streams.

3.5.2 R E A D I N G , W R I T I N G A N D C O P Y I N G R E C O R D S

GF3-Proc provides the user with three routines to read,
write or copy G F 3 records on a record by record basis
between the GF3-Proc "record buffer" and the G F 3
input/output unit(s). As the records are moved they are
transliterated as necessary. If automatic processing and
record content checking are switched on, each record is
subjected to record sequencing and data checks as it is
moved - if it is a definition record it is submitted
automatically to the definition record analyser.

i) Routine G F R C R D (I C N T) - read one or m o r e G F 3
records

This routine enables a user specified number
(I C N T) of G F 3 records to be moved from the G F 3 -
Proc 'current input unit' into the "record buffer" -
the last record read remains in the buffer for user
access. If an end of file mark is encountered before
the specified number of records have been read,

12 -

control is passed back to the user program and the
contents of the buffer are left undefined.

This routine is used primarily to read in one record
at a time for subsequent processing. The ability to
read multiple records is provided in case the user
wishes to skip a number of records in order to
select a particular portion for processing. If switched
on, automatic processing will also be applied to the
skipped records.

ii) Routine G F R T G T (I R T Y) - get the record type of
the last record read

This routine returns to the user a code (IRTY)
indicating the record type of the last record read
into the GF3-Proc "record buffer". The code is
either the G F 3 record ID (i.e. '0' for plain language
record, '1' for tape header record etc) or '-1' in the
case of a test record, '9' for an end of file mark,
'10' for an end of tape mark or '11' if the record
type is not recognised.

iii) Routine G F R C W T - write a G F 3 record

This routine is used to write a G F 3 record from the
"record buffer" to the GF3-Proc 'current output
unit' and is called once the user is satisfied that the
buffer contains the data he wishes to write. If
automatic processing is switched on, the G F 3 record
will be held temporarily by GF3-Proc in an
intermediate buffer to allow the next record type
field (i.e. byte 2 of the G F 3 record) to be filled in
automatically before the record is finally output.
Following a call to this routine, the contents of the
"record buffer" are left as undefined and the user is
required to ensure that the entire buffer is
redefined before the routine is called again.

iv) Routine G F R C C P (I C N T) - copy one or more G F 3
records

This routine enables a user specified number
(ICNT) of G F 3 records to be copied from the
GF3-Proc 'current input unit' to its 'current output
unit'. If an end of file mark is encountered before
the specified number of records have been read,
control is passed back to the user program although
the end of file mark is not copied. This routine has
a wide variety of applications in the preparation of
G F 3 tapes.

3.5.3 INITIALISING T H E G F 3 - P R O C " R E C O R D
B U F F E R "

Before a G F 3 record can be written using the write
routine (G F R C W T) the user is required to prepare the
contents of the G F 3 record in the "record buffer" using

the field handling routines described in section 3.6. As an
aid to this preparation, GF3-Proc provides a routine to
initialise the buffer with a skeleton G F 3 record image.

i) Routine G F R C I N (I R T Y , I S E Q) - initialise the G F 3
record image

This routine is used to prepare a skeleton G F 3
record image in the GF3-Proc "record buffer". The
user specifies the type (IRTY) of G F 3 record that
is to be initialised and the routine responds by
initialising the buffer accordingly thus:

test record: each character of the buffer is set to
the G F 3 test character 'A ' . The user will normally
write out the test file by a single call to G F X F W T

plain language record: the record ID and line
sequence number are entered on each line of the
record - the remaining characters are set to blanks

tape header record: the record ID and line
sequence number are entered on each line of the
record - the format acronym, translation table and
record size fields are filled with appropriate entries
and the remaining characters are set to blanks

definition records: the record ID and line sequence
numbers are entered on each line of the record -
the remaining characters are set to blanks. The user
will not normally assemble a definition record on a
field by field basis in the "record buffer" but will
instead copy over complete definition records keyed
in earlier into a disk file

file header record: the record ID and line sequence
number are entered on each line of the record, the
data cycle count and continuation flag fields are set
to zero and the remaining characters are set to
blanks

series header record: the record I D and line
sequence number are entered on the first 5 lines
only of the record, the series count field is filled
with nines, the continuation flag is set to zero and
the remaining characters are set to blanks

data cycle record: the record ID is entered in the
first character of the record - remaining characters
are set as blanks. (Note: the user will not normally
initialise the datacycle record in the buffer as control
for handling this type of record is usually vested in
the cycle writing routines (see 3.7))

end of tape record: the record ID and line sequence
number are entered on each line of the record, the
remaining characters of the first line are set to nines

- 13 -

and the remaining characters of all other lines are
set to blanks. T h e user will normally write out the
tape terminator file by a single call to G F Z F W T

Note: one of the user supplied arguments to the routine
is the line sequence number, I S E Q , at which the routine
should start numbering. It is usually set to one, but for
plain language records and definition records it m a y be
set to 25 or 49 etc. to facilitate the numbering of
continuation records of the same type.

3.5.4 VALIDATING THE CONTENTS OF THE
"RECORD BUFFER"

GF3-Proc has a comprehensive validation routine to
check the syntax and data content of G F 3 records held
in the GF3-Proc "record buffer". The routine (described
below) is activated automatically whenever the GF3-Proc
I/O Unit reading/writing the G F 3 record to/from the
"record buffer" has its automatic processing switch on
and if record content checking has not been suppressed
(3.3.5) - the checks are carried out as the record is
moved to/from the buffer and any errors detected are
logged in the error message report. However, in case the
user wishes to control error processing, e.g. to list out
the offending record from within the user program, the
routine has also been included as one of the GF3-Proc
User Interface routines callable by the user program.

i) Routine G F R C V L (L E R R) - validate GF3-Proc
"record buffer"

This routine is called to validate the current
contents of the GF3-Proc "record buffer" - it
returns to the user program a flag (L E R R)
indicating whether or not any errors have been
detected and lists out any error messages on the
GF3-Proc error report. T h e validation checks vary
according to the type of G F 3 record in the buffer -
a description of these checks m a y be found in
3.10.3. Note that the routine does not undertake
validation checks either on definition records (these
are carried out by the definition record analyser) or
on the 'user-defined areas' of series header or data
cycle records.

Note: If this routine is called by the user program, and
if automatic processing is switched on, it will be normal
to suppress record content checking in order to avoid
repeating the same checks - the record content checking
facility in the 'Automatic Processor' carries out identical
checks to G F R C V L .

3.6 GF3 FIXED FIELD HANDLING ROUTINES

3.6.1 INTRODUCTION

T h e fixed field handling routines enable the user
program to access individual data fields in G F 3 records
and are designed for the interrogation/construction of the
'fixed format area' of the G F 3 record currently held, or
being prepared, in the GF3-Proc "record buffer". A
separate set of routines is provided for handling the
contents of the 'user-defined area' of G F 3 records -
these are described in 3.7 and 3.8.

A suite of 7 routines is provided which allows the
exchange of floating point, integer and character data
between the record in the "record buffer" and the user
program. Each routine acts on a field by field basis and
uses a c o m m o n system for identifying the data field
which the user wishes to 'get' from, or 'put' into the
"record buffer". Details on the construction of the 'field
identifier' may be found in the GF3-Proc Reference
Manual -in simple terms it consists of a sequence of
three arguments I R T Y , I F L D , ILIN where I R T Y is the
G F 3 record type, I F L D is the field number within that
record type, and ILIN is the number of the line within
the G F 3 record (1-24). ILIN is only used in cases where
the combination I R T Y . I F L D does not uniquely identify
the field i.e. when the same field type is repeated on a
number of different lines e.g. as with 76 character plain
language fields in the tape header or plain language
records. W h e n not required, ILIN is set to zero.

T h e fixed field handling routines enable the user to
interact with G F 3 fields without being concerned about
their character positions within the 'fixed format area' of
the G F 3 record. T h e routines are constructed in a
completely generalised fashion. However, it should be
noted that, using these routines, all date/time and
latitude and longitude fields are handled as character
strings because a) the G F 3 date/time fields often require
too high a numeric precision to be stored in the user
program as an integer or floating point variable and b)
latitude and longitude fields include an alphabetic
hemisphere indicator. It is a simple matter using Fortran
77 to m a p these character strings to numeric variables as
required.

3.6.2 GETTING FIELD VALUES FROM THE
"RECORD BUFFER"

There are 3 routines to enable the user to 'get' a
specified G F 3 field from the record currently held in the
"record buffer" - the particular routine that is used
depends on the format in which the user wishes the field
to be returned to the user program i.e. as floating point,
integer or character data. Character access is allowed to

14 -

any field, floating point access is allowed to any numeric
field, while integer access is restricted to integer fields. If
an integer field contains implied decimal places (e.g. the
depth fields in the file/series header record) then floating
point access to the field automatically takes this into
account.

i) Routine GFRFGT('field identifier\FVAL) - get
floating point value from record field

This routine is used to return a floating point value
(F V A L) from a numeric field (user specified by
'field identifier') within the G F 3 record in the
"record buffer". If the field contains an integer value
it is processed in the form F w . O unless it contains
an implied decimal point in which case it is
processed as F w . d .

ii) Routine GFRIGT('field identifier',IVAL) - get
integer value from record field

This routine is used to return an integer value
(I V A L) from a specified integer field within a G F 3
record. T h e value is returned 'as is' i.e. if the field
contains implied decimal places it will require scaling
by the user program to produce the true value. In
such cases it is advised that the floating point
routine G F R F G T is used which performs the scaling
automatically.

iii) Routine G F R K G T (T i e l d identifierSKVAL) - get
character string from record field

This routine is used to copy the contents of a
specified field into a character variable (K V A L) .
T h e n u m b e r of characters returned is defined by
the width of the specified field in the G F 3 record.
T h e user must therefore dimension K V A L
sufficiently to accommodate the complete field. This
routine m a y be used to return the contents of any
of the fields within the G F 3 record.

3.6.3 P U T T I N G F I E L D V A L U E S I N T O T H E " R E C O R D
B U F F E R "

There are 3 routines to enable the user to 'put' data
values into specified fields within the G F 3 record being
prepared in the "record buffer" - the particular routine
that is used depends on the format in which the user
wishes to pass the data across to GF3-Proc i.e. as
floating point, integer or character data.

i) Routine GFRFPT('field identifier'.FVAL) - put
floating point variable into record field

This routine is used to store a user supplied floating
point value (F V A L) into a specified numeric field
within the G F 3 record in the "record buffer". If the

G F 3 field requires an integer value, the routine will
perform the appropriate conversion, rounding the
value as necessary. W h e r e the field requires an
integer value with implied decimal places, the
routine performs the required scaling.

ii) Routine GFRIPT(TieId identifier',IVAL) - put
integer variable into record field

This routine is used to store a user supplied integer
value (I V A L) into a specified integer field within a
G F 3 record. T h e value is stored 'as is'. If the G F 3
field contains implied decimal places, then these
must be set by suitable code in the user program.
In such cases it is advised that the floating point
routine G F R F P T is used which scales the values
automatically.

iii) Routine GFRKPTOfie ld identifier'.KVAL) - put
character information into record field

This routine is used to copy a user supplied
character string (K V A L) into a specified G F 3 field.
T h e n u m b e r of characters copied is defined by the
width of the G F 3 field. Sufficient characters must
be supplied to fill the field, including padding blanks
where necessary - if these are not supplied then a
GF3-Proc error condition will result. This routine
m a y be used to store information into any of the
fields within the G F 3 record.

Complementing the above 3 routines there is a fourth
routine that provides the special function of filling a G F 3
field in the "record buffer" with a user specified
character:

iv) Routine GFRKST('field ¡dentifier',KVAL) - set
record field to specified character

This routine is used to completely fill the G F 3 field
with the single character passed in the character* 1
variable K V A L . This routine is especially useful for
setting fields to the usual d u m m y value of all 9's,
particularly in the series/file header record.

3.7 GF3 CYCLE HANDLING ROUTINES

3.7.1 INTRODUCTION

GF3-Proc provides both an automatic facility to analyse
and store definition records, and a set of 'automatic cycle
processing' routines for reading and writing data in the
'user-defined areas' of G F 3 records. A s described earlier
(see 2.4) the 'automatic cycle processing' routines are
built around the concept of a 'cycle buffer' through
which header cycles and data cycles m a y be read or
written without the user program needing to be

- 15 -

concerned with their mapping into G F 3 records being
m o v e d through the "record buffer". It should be noted
that the 'automatic cycle processing' routines m a y only
be used if the relevant GF3-Proc I/O Unit supporting
the input/output stream of G F 3 records has the
'Automatic Processor' switched on (see 3.3.5).

In order to initiate 'automatic cycle processing' on a
particular series of cycles, the user must issue a call to
open 'automatic cycle reading' or 'automatic cycle
writing'. T h e main function of this call is to establish a
link between the appropriate definition record stored by
the definition record analyser (see 2.3) and the data
which are to be read/written from/to the 'user-defined
area' of the G F 3 record type specified by the user.
Providing the 'Automatic Processor' has been switched
on from the beginning of the input or output stream of
G F 3 records, GF3-Proc will have automatically picked
up enough information to ascertain whether the
definition record should be selected from the tape, file or
series level.

It should be noted that 'automatic cycle processing' m a y
only be open on one GF3-Proc I/O Unit at any given
time i.e. it is not permissible to open 'automatic cycle
writing' whilst 'automatic cycle reading' is open on
another Unit. Furthermore, 'automatic cycle processing'
must be closed at the end of each series of cycles,
whether they be in the 'user-defined area' of the series
header record (and its continuation records, if any) or in
a series of data cycle records, before starting on the next
series of cycles.

3.7.2 ' A U T O M A T I C C Y C L E R E A D I N G '

T h e user can only initiate 'automatic cycle reading' from
the 'user-defined area' of a G F 3 record if that record is
already in the GF3-Proc "record buffer" or is the next
record to be read. A call m a y then be issued to open
'automatic cycle reading' for that particular G F 3 record
type:

i) Routine G F C R O P (I R T Y) - open 'automatic cycle
reading'

T h e user specifies the record type I R T Y (=6 for
series header record, = 7 for data cycle record) and
GF3-Proc responds by accessing the appropriate
definition record from its internal storage. It then
checks on the record in the "record buffer" - if its
record type is not I R T Y , GF3-Proc automatically
reads the next G F 3 record in the input stream into
the "record buffer" and again checks on its record
type. If it is set as I R T Y then 'automatic cycle
reading' is opened; if not, an error is reported and
the program aborts.

Having thus opened 'automatic cycle reading' the user
m a y then start to read cycles into the 'cycle buffer':

ii) Routine G F C Y R D (I C N T) - read one or m o r e G F 3
cycles

This routine enables a user specified number
(I C N T) of G F 3 cycles to be read from the "record
buffer" into the 'cycle buffer' - the last cycle read
remains in the 'cycle buffer' for user access. T h e
routine is used primarily to read in one cycle at a
time for subsequent interrogation by the user
program. However, the ability to read multiple cycles
is provided in case the user wishes to skip over a
number of cycles in order to select a particular
portion of the data for processing.

Each time GF3-Proc is called upon to read a cycle it
accesses the next cycle in sequence from within the 'user-
defined area' of the record in the "record buffer". O n c e
the record is exhausted the next G F 3 record in the input
stream is automatically read into the "record buffer" and
GF3-Proc continues to service the user's requests for
cycles, reading the next record into the "record buffer" as
and when required. At the end of the series of cycles
GF3-Proc signals an 'end of data' condition which can be
picked up by the user program.

A s each cycle is m a d e available to the user program
through the 'cycle buffer' the user issues a call to
ascertain whether it is a header cycle or a data cycle:

iii) Routine G F C T G T (I C T Y) - get type of last cycle
read

In response to this call GF3-Proc returns in I C T Y
a code to indicate the type of the last cycle read viz
l=header cycle; 2=data cycle; 3=end of data. This
routine serves two functions; not only does it inform
the user of the cycle type, it also informs the user
when the 'end of data' has been reached.

Having ascertained the type of cycle in the 'cycle buffer'
the user can then access the parameter values contained
in the cycle using the parameter handling routines (see
3.8.2).

W h e n the user has finished reading cycles, a call must be
issued to GF3-Proc to close d o w n 'automatic cycle
reading':

iv) Routine G F C R C L - close 'automatic cycle reading'

This routine serves a housekeeping function and
performs no processes of concern to the user -
however, if it is not called, the user will not be able
to m a k e further calls to open 'automatic cycle
reading or writing'.

3.7.3 'AUTOMATIC CYCLE WRITING' iii) Routine G F C Y W T - write a G F 3 cycle

Before starting to write cycles in the 'user-defined area'

of a series header record the user must first set up the

'fixed format area' (i.e. first 400 bytes) of the record in

the "record buffer". If he wishes to start writing cycles in

a data cycle record, then he must first of all ensure that

the previous G F 3 record set up in the "record buffer"

has been written out. Once the appropriate condition is

satisfied, the user m a y then open 'automatic cycle

writing':

i) Routine G F C W O P (I R T Y) - open 'automatic cycle

writing'

T h e user specifies the record type I R T Y (=6 for

series header record or = 7 for data cycle record) in

which he wishes to write cycles and GF3-Proc

responds by automatically accessing the appropriate

definition record from its internal storage. If

I R T Y = 6 , GF3-Proc checks that the "record buffer"

contains a series header record - if not then an

error message is generated and the program

aborted. If I R T Y = 7 then GF3-Proc creates a

skeleton data cycle record in the "record buffer" -

note that this will overwrite the existing contents of

the "record buffer" and hence the need to ensure

that the previous record has already been written

out.

Having opened 'automatic cycle writing' the user m a y

then start constructing the first cycle by feeding

appropriate parameter values into the 'cycle buffer' using

the parameter handling routines described in 3.8.3 - the

first cycle created by the user will be a header cycle or

a data cycle depending on whether or not the 'user-

defined area' contains any header parameters.

It should be noted that, from its analysis of the definition

record and subsequent monitoring of cycles being passed

to it from the user program, GF3-Proc is always aware

of what type of cycle should next be passed to it for

writing. If the user starts setting up parameters for the

wrong type of cycle in the 'cycle buffer' then GF3-Proc

will generate an error message and abort the user

program. It is advisable therefore that, before starting to

construct a cycle in the 'cycle buffer' the user should first

check on what type of cycle is required:

ii) Routine G F C X G T (I C T Y) - get type of next cycle to

be written

In response to this call GF3-Proc returns in I C T Y

a code to indicate the type of cycle that should next

be written viz l=header cycle, 2=data cycle.

Having created the correct type of cycle in the 'cycle

buffer' the user m a y then write it by calling:

This routine does more than simply write the cycle

from the 'cycle buffer' to the "record buffer". While

the user is constructing the cycle in the 'cycle buffer'

using the parameter handling routines, GF3-Proc

maintains a m a p of the cycle which indicates which

parameters are being set up by the user. W h e n

G F C Y W T is called, GF3-Proc interrogates this m a p

and, if any parameters have not been supplied with

values by the user, GF3-Proc sets them up with

their appropriate d u m m y values as specified in the

definition record. If any of these parameters have

not been given a d u m m y value code in the

definition record, an error will result (the user m a y

suppress GF3-Proc's automatic processing of d u m m y

values if so desired by manipulating package control

option switch 9 - see 3.2.2).

A s each cycle constructed in the 'cycle buffer' is written

using the above routine, GF3-Proc sets it up in sequence

in the 'user-defined area' of the G F 3 record being

constructed in the "record buffer". W h e n the 'user-

defined area' is full, GF3-Proc automatically sets up the

record's accounting fields and writes the record out to

the G F 3 output stream. A s the next cycle is received for

writing from the 'cycle buffer' GF3-Proc automatically

takes appropriate action to initialise the "record buffer"

in readiness for constructing the next G F 3 record - in the

case of a series header continuation record this includes

setting up of the first 400 bytes of the record (i.e. its

'fixed format area') using information available from the

previous record.

If the 'user-defined area' being written into contains both

header and data cycle parameters then, as each new

record is initialised by GF3-Proc in the "record buffer",

GF3-Proc will expect to receive a header cycle from the

'cycle buffer' and not a data cycle. However , if the user

always calls routine G F C X G T (ii above) before

constructing a cycle in the 'cycle buffer' he will

automatically be aware of this without having to be

concerned with the mapping of cycles into records from

within the user program.

If the 'user-defined area' contains both header and data

cycle parameters, then it is quite possible that, from time

to time, changes m a y be required in the header

parameters away from the G F 3 record boundaries. In

such cases the user will require GF3-Proc to write out

the record currently being prepared in the "record

buffer", and to set up the "record buffer" in readiness

to receive a header cycle for the next record.

iv) Routine G F C C F L - flush current record

This routine is used w h e n the user wishes to specify

the start of a fresh G F 3 record. It sets up the

17 -

accounting fields for the G F 3 record currently being

prepared in the "record buffer" and writes the

record out to the G F 3 output stream. By default

the routine only outputs the "record buffer" if there

is at least one data cycle present, thus preventing

generation of G F 3 records containing a header cycle

and no data cycles. The user m a y override this

condition by setting Package Control option switch

8 (see 3.2.2). T h e "record buffer" is then set to

receive the next cycle to be written at the beginning

of the next record. (N . B . if the definition of the

'user-defined area' consists solely of header

parameters, then the "record buffer" is automatically

flushed each time the header cycle is written using

G F C Y W T - see iii above).

Once the user has finished writing the series of cycles he

issues a call to close d o w n 'automatic cycle writing':

v) Routine G F C W C L - close 'automatic cycle writing'

Besides its system housekeeping function, this

routine automatically issues a call to the routine

G F C C F L (iv above) to ensure that any data cycles

remaining in the "record buffer" are written out as

appropriate to the G F 3 record output stream.

T h e above routines are so designed that the user need

not be concerned about h o w G F 3 cycles are arranged

into G F 3 records or indeed h o w m a n y parameters are

stored in each cycle. However, there m a y be occasions

where such information is required by the user. For

example, access to the number of parameters per data

cycle m a y be needed to facilitate the writing of data

driven programs. Furthermore, the user may need to

know the number of data cycles per record in order to

set a header parameter indicating whether or not the

current data sequence is to be continued onto the next

record. T h e relevant information can be m a d e available

to the user by calling the following routine:

vi) Routine G F C S G T (I H C T , I D C T , I C P R) - get cycle

sizes

This routine returns to the user: the number of

header parameters (I H C T) , the number of data

cycle parameters (I D C T) and the number of data

cycles (ICPR) the record is designed to hold.

3.8 GF3 PARAMETER HANDLING ROUTINES

3.8.1 INTRODUCTION

T h e parameter handling routines form part of G F 3 -

Proc's 'automatic cycle processing' suite and enable the

user program to access individual parameter values in

G F 3 cycles. They are designed for the interrogation/

construction of the G F 3 cycle currently held, or being

prepared, in the GF3-Proc 'cycle buffer'.

A suite of 6 routines is provided which allows the

exchange of floating point, integer and character data

between the cycle in the 'cycle buffer' and the user

program. Each routine acts on a parameter by parameter

basis and uses a c o m m o n system for identifying the

parameter value which the user wishes to 'get' from, or

'put' into the 'cycle buffer'.

T h e 'parameter identifier' used by these routines is

simply the position of the parameter in the parameter

order specified in the definition record describing the

'user-defined area' to or from which the present cycle in

the 'cycle buffer' is directed. For header parameters this

is the same as the sequential position of the parameter

in the header cycle i.e. the n'th parameter in the header

cycle has a 'parameter identifier' of n. However , for data

cycle parameters, the 'parameter identifier' is the

sequential position of the parameter within the data cycle

plus the number of header parameters i.e. if there are x

header parameters then the n'th parameter in the data

cycle has a 'parameter identifier' of n + x.

Additional routines are provided to enable the user to

look up the G F 3 Parameter Code and discriminator

associated with each 'parameter identifier' (and vice

versa) and to ascertain the m o d e and number of

characters used to store the parameter within the cycle.

Information is also provided on the secondary parameter

code and discriminator.

3.8.2 GETTING PARAMETER VALUES FROM THE
'CYCLE BUFFER'

There are 3 routines to enable the user to 'get' the value

of a specified parameter from the G F 3 cycle currently

held in the 'cycle buffer' - the particular routine that is

used depends on the format in which the user wishes

the parameter value to be returned to the user program

i.e. as floating point, integer or character data. Character

access is allowed to any parameter; floating point is

allowed to any numeric parameter; while by default

integer access is restricted to unsealed integer parameters

(default m a y be overridden by modifying Package

Control Option Switch 10 - see 3.2.2).

It should be noted that the scaling referred to in these

routines relates to the Scale 1(*) and Scale 2(+) factors

associated with each parameter in the definition record

i.e. the factors that are to be applied to each stored

numeric parameter to obtain its true value. If the Scale

1 and Scale 2 fields are set to 1.0 and 0.0 respectively or

left blank in the definition record, then GF3-Proc

assumes that scaling is not required on the parameter

value i.e. it returns the numeric value as stored.
Otherwise GF3-Proc automatically applies the scaling
factors unless the user has already suppressed this action
through his setting of package control option switch 10
(see 3.2.2).

i) Routine G F C F G T O p a r a m e t e r identifier',FVAL,
L A D V) - get parameter value in floating point form

This routine copies the value of the user identified
parameter from the 'cycle buffer' into a floating
point variable and compares the integer portion of
the value with the d u m m y value assigned to the
parameter through the definition record. If missing
data is indicated, the logical variable L A D V is set
to . T R U E , and returned to the user program.
Otherwise the parameter value is scaled according
to the scaling factors specified in the definition
record and returned to the user program in the
floating point variable F V A L .

ii) Routine GFCIGT('parameter identifier'.IVAL,

L A D V) - get parameter value in integer form

This routine is used to return the integer value
r V A L of the user identified parameter stored in the
'cycle buffer' in integer form. T h e value is compared
with the d u m m y value assigned to the parameter
through the definition record and if missing data is
indicated the logical variable, L A D V is set to
. T R U E . Note that attempts to use this routine on
a scaled integer (i.e. Scale 1 * 1.0, or Scale 2 * 0.0)
m a y produce a GF3-Proc error. Scaled integers
should be retrieved using the floating point routine
G F C F G T (i above).

iii) Routine G F C K G T (' p a r a m e t e r identifier'.KVAL) -
get parameter in character form

This routine is used to copy 'as is' the contents of
the user identified parameter in the 'cycle buffer'
into a character variable (K V A L) . T h e number of
characters returned is governed by the field width
specified for the parameter in the definition record.
This routine m a y be used for any parameter in the
'cycle buffer' (N . B . for numeric fields it ignores the
scaling factors).

i) Routine G F C F P T f p a r a m e t e r identifier'.FVAL) -
put parameter in floating point form

This routine is used to store a user supplied floating
point value (F V A L) into a user identified numeric
(floating point or integer) parameter in the 'cycle
buffer'. Providing the user has not suppressed
automatic scaling (package control option switch
10), the routine will inversely apply the scaling
factors specified for the parameter in the definition
record before the value is stored i.e. subtract Scale
2 and then divide by Scale 1 - this step is omitted
if Scale 1 and Scale 2 are left blank or set to 1.0 or
0.0 respectively. T h e value is stored as floating point
or integer depending on h o w the parameter is
defined in the definition record - for floating point
parameters the value is stored (rounded rather than
truncated) to the precision specified in the format
statement in the definition record, providing this is
within the single precision floating point precision of
the user's machine.

ii) Routine GFCIPTCparameter identifier'.rVAL) - put
parameter in integer form

This routine stores 'as is' the user supplied integer
value (I V A L) into a user identified integer
parameter in the 'cycle buffer'. Note that if the
value requires scaling then it should be copied to a
floating point variable and stored using the floating
point routine G F C F P T (i above).

iii) Routine G F C K P T C p a r a m e t e r identifier'.KVAL) -
put parameter in character form

This routine m a y be used to copy a user supplied
character string (K V A L) into a user identified
parameter field in the 'cycle buffer'. T h e n u m b e r of
characters copied is determined by the width of the
parameter field as specified in the definition record.
Sufficient characters must be provided to fill the
field including padding blanks if necessary, otherwise
a GF3-Proc error condition will result. This routine
m a y be used to store information into any of the
parameters within the G F 3 cycle - note that for
numeric fields it does not incorporate any parameter
scaling that m a y be required.

3.8.3 P U T T I N G P A R A M E T E R V A L U E S INTO T H E
' C Y C L E B U F F E R '

3.8.4 P A R A M E T E R I N F O R M A T I O N L O O K U P
R O U T I N E S

There are 3 routines to enable the user to 'put' data
values into specified parameters within the GF3 cycle
being prepared in the 'cycle buffer' - the particular
routine that is used depends on the format in which the
user wishes to pass the data across to GF3-Proc i.e. as
floating point, integer or character data.

These routines enable the user to look up information
stored by GF3-Proc on the parameters defined in the
'user-defined area' of the record on which 'automatic
cycle processing' has been opened. In particular, they
provide a lookup facility between the 'parameter
identifier' as used by the 'automatic cycle processing'
routines and the G F 3 parameter code and other

- 19 -

information assigned to the parameter in the definition

record.

i) Routine G F C C G T f p a r a m e t e r identifiei^KPRM,

I D S C , K S P R M , I S D R C) - get parameter codes for a

given parameter identifier

Given the 'parameter identifier' the routine returns

to the user program a character string (K P R M)

containing the 8 character G F 3 parameter code and

an integer value (IDSC) containing the discriminator

associated with the parameter in the definition

record. It also returns the 8 character secondary

parameter code (K S P R M) , and the secondary

parameter discriminator (ISDRC) , associated with

the parameter.

ii) Routine G F C C L K C p a r a m e t e r identifier'.KPRM,

I D S C , K S P R M , I S D S C) - get 'parameter identifier'

given information on the parameter code

This routine returns the 'parameter identifier' to the

user program given the 8 character G F 3 parameter

code (K P R M) , its discriminator (IDSC) in integer

form and the 8 character secondary parameter code

(K S P R M) and the secondary parameter

discriminator (I S D R C) .

The following two routines are simpler variants of i) and

ii) which were developed for the more restricted

environment of the Level 3 version of GF3-Proc and

have been retained in Level 4 so as to maintain a

consistent user interface:

iii) Routine GFCPGTCparamete r identifier'.KPRM,
I D S C) - get parameter code

Given the 'parameter identifier' the routine returns

to the user program a character string (K P R M)

containing the 8 character G F 3 parameter code and

the integer value I D S C of the discriminator

associated with the parameter in the definition

record.

iv) Routine GFCNGT('parameter identifier'.KPRM,

I D S C) - get 'parameter identifier'

Given the 8 character G F 3 parameter code in the

character string K P R M , the routine returns to the

user program the 'parameter identifier' associated

with the first occurrence of the parameter code in

the definition record, together with the parameter

discriminator I D S C . If the 'parameter identifier' of

subsequent occurrences of the parameter code in

the definition record is required, it can easily be

obtained by placing routine G F C P G T (iii above) in

a loop cycling through the 'parameter identifier'

numbers.

v) Routine GFCFLDfparameter identifier'.nYP,
I W I D , F S C A , F S C B) - get parameter storage details

associated with a given 'parameter identifier'

Given the 'parameter identifier' the routine returns

details on h o w the parameter is stored as described

in the definition record thus: integer LTYP=storage

m o d e (coded as 0=integer, 1 = floating point,

2=character), integer I W I D = n u m b e r of characters

allocated to the storage of the parameter, and

floating point numbers F S C A and F S C B containing

Scale 1 and Scale 2 respectively.

3.9 SPECIAL UTILITY ROUTINES

The special utility routines are a small collection of

routines that are recognised as being of assistance to the

user in the preparation or reading of data in G F 3 . It is

planned that this collection will grow as more user

experience is gained in the use of GF3-Proc, and the

need for additional specialised features becomes

apparent. Details of these routines m a y be found in the

GF3-Proc Reference Manual.

3.10 GF3-PROC ERROR REPORTING

3.10.1 INTRODUCTION

The GF3-Proc software includes an extensive level of

error checking to ensure that tapes read or written using

the package conform as closely as possible to the

specification of G F 3 . The checks also provide an inbuilt

protection against user misuse of the package and against

malfunctioning of the package due to code corruption.

GF3-Proc contains some 180 internal error traps, many

of which may be triggered from a number of different

points within the package.

Each error detected by GF3-Proc generates an

appropriate message on the error reporting file - further

action taken by GF3-Proc depends on the nature of the

error. If the error results from incorrect use of the

package, or is likely to corrupt further processing, then

GF3-Proc always stops program execution. However, if

the error is in the data being processed, then GF3-Proc

may or may not abort the program, depending on the

user setting of package control option switch 7 (see

3.2.2).

GF3-Proc error messages are reported in a c o m m o n

format:

*** GF3-PROC MESSAGE m m nnn SORRY, ttt..

- 20 -

where m m is the message type (see 3.10.2)
n n n is the message n u m b e r
ttt.. is an abbreviated text for the message type

e-g- GF3-PROC MESSAGE 02 008 SORRY,
CALL NOT ACCEPTABLE

Using the message number given in the error report as
reference, the user is able to obtain details on the nature
and likely cause of each error from the GF3-Proc
Reference Manual.

3.10.2 T Y P E S O F E R R O R M E S S A G E

GF3-Proc operates nine different levels of error checking
- each level generates its own type of error message:

i) Type 01 messages - V A L U E N O T A C C E P T A B L E

These messages are generated when a user supplied
argument passed to a GF3-Proc User Interface
routine is in error, e.g. it is in the wrong format; it
is not an acceptable value; it asks GF3-Proc to take
an illegal action, etc

ii) Type 02 messages - C A L L N O T A C C E P T A B L E

This class of error results when a GF3-Proc User
Interface routine is called in circumstances where
such a call is not permitted, e.g. calling an
'automatic cycle processing' routine before a
definition record has been received by GF3-Proc

iii) Type 03 messages - C H E C K H A S F A I L E D

These checks are primarily concerned with record
content checking (see 3.10.3)

iv) Type 04 messages
SEQUENCE

RECORD NOT IN

These errors are generated by the record sequence
analyser invoked by GF3-Proc's 'Automatic
Processor' (see 2.3) when a G F 3 record has been
read/written in a sequence not permitted by the
rules of G F 3

v) Type 05 messages - D E F I N I T I O N S C A N F A I L E D

These errors are generated by GF3-Proc's definition
record analyser (see 3.10.4) when a formatting error
has been detected in a G F 3 definition record

vi) Type 06 messages
FAILED

FIELD CONVERSION

These errors are concerned with the conversion of
data values into floating point, integer or character
variables

vii) Type 07 messages - N O T E N O U G H I N T E R N A L
STORE

These errors indicate that various arrays used
internally by GF3-Proc are under-dimensioned for
the user's particular application - they are usually
produced by the package's definition record analyser

viii) Type 08 messages - I N T E R N A L E R R O R

GF3-Proc has been coded with a number of
(hopefully) redundant internal checks. If these
checks fail a type 08 error message is generated and
the user is requested to forward a detailed report to
B O D C for analysis

ix) Type 09 messages - SITE SPECIFIC E R R O R S

These errors are unique to a particular GF3-Proc
installation and are documented in the installation
specific supplement to the GF3-Proc Reference
Manual. The vast majority of GF3-Proc installations
do not include installation specific error checks

3.10.3 RECORD CONTENT CHECKING

T h e record content checks are designed to ensure that
the contents of the 'fixed format area' of individual G F 3
records conform to G F 3 specifications - where
appropriate, checks are also m a d e on the validity of
individual field entries including their internal consistency
with other field entries. Record content checking is not
carried out on data cycle or definition records - the latter
are subjected to rigorous analysis and checking by the
definition record analyser (see 3.10.4). T h e record
contents checks are carried out by the routine G F R C V L
(see 3.5.4) in response either to a direct call from the
user program or to a call issued by the 'Automatic
Processor'. T h e following conditions are checked
independent of the G F 3 record type:

a) the record identifier is correctly given on each line

b) line sequence n u m b e r s are integer contiguous
starting with 1

c) mandatory fields contain non-blank entries

d) unassigned fields are blank filled

The remaining checks are dependent on the type of G F 3
record:

Plain language record :

a) the line sequence number check is modified
to start with a multiple of 24 plus 1

- 21 -

Tape header record :

a) format acronym = G F 3 . 2 (or G F 3 . 1)

record size field = 1920 b)

c)

d)

date fields with valid entries (i.e. not blank or
9's filled) conform to the correct syntax (e.g.
m o n t h is 1 to 12)

if valid entries present, date of first version
precedes or equals that of current version

File header record :

a) continuation flag = 0

b) number of series = positive value

c) data cycle count = 0

Series header record :

a) continuation flag = 0, or 1

b) number of series is 9's filled

c) data cycle count is not negative

File/series header record :

d) all date/time fields are syntax checked unless
blank or 9's filled

e) end date/time fields do not precede
corresponding start date/time fields

f) end date/time fields for data and
cruise/flight... precede date/time of file/series
creation

g) cruise/flight... date/time period encompasses
data date/time period

(the above checks are tolerant of missing
fields or sub-fields of date and time)

h) unless blank or 9's filled, all latitude and
longitude fields are syntax checked, e.g.
latitude in range 0 to 90 with hemisphere
indicator = N or S; longitude in range 0 to
360 with hemisphere indicator = E or W

i) position usage field is 1,2, or 9 - if 9 then
following latitude and longitude fields are 9's
filled

j) absolute value of sea floor depth is less than
12000 metres

k) absolute value of m a x i m u m observation depth
is greater than or equal to the absolute value
of m i n i m u m observation depth

1) positional uncertainty field is positive

3.10.4 D E F I N I T I O N R E C O R D C H E C K I N G

In view of the key role that they play in the processing
of data in the 'user-defined areas' of G F 3 , all definition
records received for analysis by GF3-Proc's 'Automatic
Processor' are subjected to a detailed and rigorous
checking. During this checking the definition record is
concatenated with its continuation definition records, if
any. T h e checking covers both simple syntax checks on
individual fields and cross checking between fields,
particularly between the Fortran format statement and
the definition of each individual parameter.

i) General checks - GF3-Proc checks that:

a) the record identifier is correctly set on each
line

b) the line sequence numbers are in integer
contiguous sequence starting at 1

ii) Fortran format checks - GF3-Proc checks that:

a)

b)

c)

d)

e)

0

g)

all characters are I F A X , . () blank or
0 to 9

individual format elements have the correct
syntax

format is enclosed by parentheses

all parentheses are paired

parenthesis are nested no more than 4 deep

m a x i m u m of 14 decimal places in any real
field

when expanded out, the record area mapped
by the format statement does not exceed the
size of the 'user-defined area', i.e. 1520
characters for a series header record or 1900
characters for a data cycle record

iii) Individual parameter lines - GF3-Proc checks that:

a) the parameter code and n a m e are specified,
i.e. non blank

b) the d u m m y value code is blank filled if
storage m o d e is ' A '

c) the d u m m y value code conforms to the G F 3
specification

d) the d u m m y value fits within the field width
specified for the parameter

e) the storage m o d e is I, F or A

f) the secondary parameter usage flag is n o n
blank w h e n secondary parameters are present

- 22 -

iv) Internal consistency - GF3-Proc checks that:

a) the s u m of the header parameter and data
cycle parameter count fields is consistent with
the total number of parameter lines

b) the storage m o d e and field width of each
parameter are consistent with their
corresponding elements in the format
statement

c) the format summary (col. 9 of 1st line) is
consistent with the storage modes in the
format statement

d) each of the data cycles is formatted in an
identical fashion, i.e. there is no variation

between individual data cycles - the system is
however tolerant of a varying number of
blanks before or after each data cycle

The level of checking carried out by the 'Automatic
Processor' is such that if the definition record(s) satisfies
these checks, the user can be fairly confident that the
record contains no errors. (Of course the system is
unable to check whether the parameters are correctly
labelled with respect to parameter code and parameter
name) . In preparing definition records it is suggested
that the user should build them up on disk and submit
them to a short GF3-Proc program for checking before
actually putting them into operational use.

- 23 -

	Contents

