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N O T E 
 
 
The designations employed and the presentation of material in this publication do not imply the 
expression of any opinion whatsoever on the part of the Secretariats of the Intergovernmental 
Oceanographic Commission (of UNESCO), and the World Meteorological Organization concerning the 
legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its 
frontiers or boundaries. 
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 Introduction 
Estimates of the m-year return value of significant wave height─the value which is exceeded on 
average once every m years─are needed for the safety control and design of ship, offshore, and 
coastal structures, and for the mapping of flood risk areas. The WMO Guide to Wave Analysis and 
Forecasting aims at providing guidance on how to obtain those estimates. In the design of ships 
and offshore platforms 1/20-yr to 1/100-yr return values are often used. In the control of the safety 
of the Netherlands sea defenses return values of up to 1/10,000-yr are used. In the mapping of 
food risk area in the United Kingdom 1/1,000-yr return values are used. The longer time series of 
significant wave height available come from hindcasts and usually cover no more than 50 years, 
meaning that one generally needs to extrapolate well beyond the range of the available data and 
thus resort to extreme value analysis to obtain the required return value estimates. 
 
In this report we begin by describing and discussing approaches that can be used to estimate 
such return values in Chapter 2. Approaches based on extreme value theory as well as ad hoc 
methods are considered. We then present in Chapter 3 some worked examples using two time 
series of significant wave height measurements, one in deep and the other in shallow waters. In 
Chapter 4 we provide an inventory of software packages available to carry out extreme value 
analyses. We finish in Chapter 5 with some guidelines / recommendations. 
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Methodologies 

Introduction 

 
This chapter briefly introduces the principles of extreme value theory and describes the methods 
used in extreme value analysis (EVA). Other approaches to estimate return values will also be 
considered. For further background information on extreme value theory and analyses we 
recommend the book of Stuart Coles (Coles, 2001), which is comprehensive, easy to read and 
presents many applications to environmental data.  

Extreme value theory 

Extreme value theory provides analogues of the central limit theorem for the extreme values 
in a sample. According to the central limit theorem, the mean of a large number of random 
variables, irrespective of the distribution of each variable, is distributed approximately 
according to a Gaussian distribution. For example, the sea surface elevation is often 
modelled as a sum of several individual random waves and accordingly its distribution is often 
assumed to be Gaussian. According to extreme value theory, the extreme values in a large 
sample have an approximate distribution that is independent of the distribution of each 
variable. 

Block maxima 

In order to explain the basic ideas, let us define { }1max , ,n nM X X= K , where 1 2,X X K is a 
sequence of independent random variables having a common distribution function F. In its 
simplest form, the extremal types theorem states the following: If there exist sequences of 
constants { }0nσ >  and { }nμ  such that { }P ( )n n nM z G zσ μ+ ≤ →  as n →∞ , where G is a 
non-degenerate cumulative distribution function1, then G must be a generalized extreme 
value (GEV) distribution, which is given by 

1

exp 1 , for 0

( )

exp exp ,    for 0,

z

G z
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μ ξ
σ

−⎧ ⎧ ⎫⎡ ⎤−⎪ ⎪⎛ ⎞⎪ − + ≠⎨ ⎬⎜ ⎟⎢ ⎥⎝ ⎠⎪ ⎣ ⎦⎪ ⎪⎩ ⎭= ⎨
⎧ ⎫⎪ ⎡ ⎤−⎛ ⎞− − =⎨ ⎬⎪ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎩ ⎭⎩

 (2.1)

where z  take values in three different sets according to the sign of ξ : z μ σ ξ> −  if 0ξ >  
(the domain of z  has a lower bound), z μ σ ξ< −  if 0ξ <  (the domain of z  has an upper 
bound), and z−∞ < < ∞  if 0ξ = . 

                                                     
1. A distribution function is said to be degenerate if it allocates probability 1 to a single point. 
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In other words, if the sequence of distribution functions of (normalizations of) the maximum 
value in a random sample of size n converges to a (single) distribution function as n tends to 
infinity, then that distribution function must be a GEV distribution. Moreover, this and other 
results of extreme value theory hold true even under general dependence conditions (Coles, 
2001). 

 

In Eq. (2.1), the parameters μ , σ  and ξ  are called the location, scale, and shape 
parameters and satisfy μ−∞ < < ∞ , 0σ >  and ξ−∞ < < ∞ . For 0ξ =  the GEV is the 
Gumbel distribution, for 0ξ >  it is the Fréchet distribution, and for 0ξ <  it is the Weibull 
distribution (of maxima). For 0ξ >  the tail of the GEV is “heavier” (i.e., decreases more 
slowly) than the tail of the Gumbel distribution, and for 0ξ <  it is “lighter” (decreases more 
quickly and actually reaches 0) than that of the Gumbel distribution. The GEV is said to have 
a type II tail for 0ξ >  and a type III tail for 0ξ < 2. The tail of the Gumbel distribution is called 
a type I tail.  

 

The extremal types theorem gives rise to the annual maxima (AM) method of modelling 
extremes, in which the GEV distribution is fitted to a sample of block maxima (e.g. to annual 
maxima, though biannual, seasonal, monthly or even daily maxima can of course be used as 
well). 

 

One of the main applications of extreme value theory is the estimation of the once per m year 
(1/m-yr) return value, the value which is exceeded on average once every m years. The 1/m-
yr return value based on the AM method/GEV distribution, mz , is given by 

-
11 log 1 , for 0
m

1ln log 1 , for 0.
m

mz

ξ
σμ ξ
ξ

μ σ ξ

⎧ ⎛ ⎞⎧ ⎫⎛ ⎞⎪ ⎜ ⎟− − − − ≠⎨ ⎬⎜ ⎟⎜ ⎟⎝ ⎠⎪ ⎩ ⎭⎝ ⎠= ⎨
⎪ ⎧ ⎫⎛ ⎞− − − =⎨ ⎬⎪ ⎜ ⎟

⎝ ⎠⎩ ⎭⎩

 (2.2)

The sample sizes of annual maxima data are usually small, so that model estimates, 
especially return values, have large uncertainties. This has motivated the development of 
more sophisticated methods that enable the modelling of more data than just block maxima. 
These methods are based on two well-known characterizations of extreme value distributions: 
one based on exceedances of a threshold, and the other based on the behaviour of the r 
largest, for small values of r, observations within a block. These are described in the following 
two sub-sections. 

                                                     
2. Please note that some articles (e.g. Hosking and Wallis, 1987) use another convention for the 

signal of the shape parameter: a negative shape parameter in those references corresponds to a 
type II distribution. 
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Peaks Over Threshold 

The approach based on the exceedances of a high threshold, hereafter referred to as the 
POT (Peaks Over Threshold) method, consists of fitting the generalized Pareto distribution 
(GPD) to the peaks of clustered excesses over a threshold, the excesses being the 
observations in a cluster minus the threshold, and calculating return values by taking into 
account the rate of occurrence of clusters (see Pickands, 1971 and 1975, and Davidson and 
Smith, 1990). Under very general conditions this procedure ensures that the data can have 
only three possible, albeit asymptotic, distributions (the three forms of the GPD given below) 
and, moreover, that observations belonging to different peak clusters are (approximately) 
independent. In the POT method, the peak excesses over a high threshold u of a time series 
are assumed to occur in time according to a Poisson process with rate uλ  and to be 
independently distributed as a GPD, whose distribution function is given by 

1

1 1 , for 0
( )

1 exp ,      for 0,
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y

F y
y
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 (2.3)

where 0 y< < ∞ , 0uσ >  and ξ−∞ < < ∞ . The two parameters of the GPD are called the 
scale ( uσ ) and shape (ξ) parameters. When 0ξ =  the GPD is said to have a type I tail 
and amounts to the exponential distribution with mean uσ ; when 0ξ >  it has a type II tail 
and it is the Pareto distribution; and when 0ξ <  it has a type III tail and it is a special case 
of the beta distribution. If 0ξ < , just as with the GEV, the support of the GPD was an 
upper-bound, σ ξ− % , which is called the upper end-point of the GPD. The significance of 
this upper end-point is that (because when 0ξ <  one must have ux σ ξ< −  in Eq. (2.3)) 
the excesses over u modelled by the GPD cannot take values greater than uσ ξ− , which 
in turn means that the exceedances of the variable of interest cannot exceed the value 

*
ux u σ ξ= − . (2.4)

This parameter *x  is to be thought of as the upper-limit of the variable of interest (e.g. of 
Hs). 

 

The 1/m-yr return value based on a POT/GPD analysis, zm, is given by 

u

u

{ ( m) 1}, for 0

log( m), for 0.

u

m
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u
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ξσ
λ ξ

ξ
σ λ ξ

⎧ + − ≠⎪= ⎨
⎪ + =⎩

 (2.5)

Note that this expression is obtained from Eq. (2.3) by solving 
1(1 ( ))u
u

F y
mλ

− =  for y and then 

adding the threshold u to the result. 
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Just as block maxima have the GEV as their approximate distribution, the threshold excesses 
have a corresponding approximate distribution within the GPD family. Moreover, the 
parameters of the GPD of threshold excesses are uniquely determined by those of the 
associated GEV distribution of block maxima. In particular, the shape parameter is the same, 
and the scale parameters of the two distributions are related by  

( )u uσ σ ξ μ= + − . (2.6)

 
Figure 2.1 Example of the POT sample selection. The green stars indicate the observations exceeding the 

threshold and the red stars the selected POT points. 
 

The sample to be used in the POT method has to be extracted from the original time series in 
such a way that the data can be modelled as independent observations. This is done by a 
process of declustering in which only the peak (highest) observations in clusters of 
successive exceedances of a specified threshold are retained and, of these, only those which 
in some sense are sufficiently apart (so that they belong to more or less ‘independent storms’) 
are considered as belonging to the collection of POT points. Specifically, in the present 
applications we have treated cluster maxima at a distance of less than 48 h apart as 
belonging to the same cluster (storm). Figure 2.1 shows an example of the POT sample 
selection. The green stars indicate the observations exceeding the threshold and the red 
stars the selected POT points. Note that only the cluster maxima are retained and that the 
peak of the first and third clusters were in this case not considered because they are less 
than 48h apart from the peaks of the second and fourth clusters, respectively. 
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The choice of threshold (analogous to the choice of block size in the block maxima approach) 
represents a trade off between bias and variance: too low a threshold is likely to violate the 
asymptotic basis of the model, leading to bias; too high a threshold will generate fewer 
excesses with which to estimate the model, leading to high variance. An important property of 
the POT/GPD approach is the threshold stability property: if a GPD is a reasonable model for 
excesses of a threshold 0u , then for a higher threshold u  a GPD should also apply; the two 
GPD’s have identical shape parameter and their scale parameters are related by 

( )
0 0u u u uσ σ ξ= + − , which can be reparameterized as 

* .u uσ σ ξ= −  (2.7)

 

Consequently, if μ0 is a valid threshold for excesses to follow the GPD then estimates of both 
σ* and ξ should remain nearly constant above μ0. This property of the GPD can be used to 
find the minimum threshold at which a GPD model applies to the data. 

r-largest 

 
The characterizations of extreme value distributions based on the behaviour of the r largest 
observations within a block is know as the r-largest approach. This approach is not often used 
in practice and is therefore not describe in detail nor applied in this study.  

Briefly, it consists of collecting the r-largest values per year (instead of merely the annual 
maxima) and fitting the r-largest distribution (see, for instance, Coles, 2001, pp. 68) to the 
data. An example of the application of this method to estimate return values of significant 
wave height is given by Guedes Soares and Scotto (2004). 

The choice of r is analogous to the choice of threshold in the POT method and the choice of 
block size in the block maxima approach. 

Other approaches 

Choice of distribution 

The choice of distribution to fit AM and POT data is limited by the extreme value theory as 
mentioned above. However, mostly for historical reasons, in many studies the Weibull 
distribution of minima instead of the GPD is fitted to POT data.  

 

This Weibull distribution is not the Weibull distribution of maxima referred to in Eq. (2.1) for 
0ξ < , but the Weibull distribution of minima (a form of the GEV distribution for minima). In 

particular, while the latter has a Type III upper tail, the former has a Type I (exponential) 
upper tail. It was introduced by Weibull in connection with failure data because it is the 
approximate distribution of the minimum of many variables, which could be seen as the 
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weakest link among many links that can be broken in a structure. Popularized by reliability 
engineers, its use has spread to other areas, in particular to ocean engineering. It is given by  

( ) 1 exp
c

u
yF y
a

⎛ ⎞⎛ ⎞= − −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
. (2.8)

Although not generally advisable, there are certain situations in which it makes sense to fit a 
Weibull distribution of minima to the peak excesses in place of the GPD model. Indeed, 
suppose that the data really follow a Type I tail, or at least that this has been convincingly 
demonstrated on the basis of some statistical analyses (which is often the case in deep 
waters; see Caires and Sterl, 2005). Then the asymptotic distribution of the excesses is 
exponential. Since the exponential is a special case of the Weibull distribution of minima, one 
might think that there would be no harm in fitting a Weibull rather than an exponential to the 
data. Now, if the data are truly exponential, this would actually entail more uncertainty in 
parameter estimates, which would be undesirable (intuitively, to know that the data are 
exactly exponential amounts to more information than knowing that they are Weibull). 
However, it may happen that, because the exponential is only valid asymptotically, the 
Weibull distribution will provide a better approximation to the data (since it has one more 
parameter and hence more flexibility), and in that case fitting the latter would provide better 
results than fitting the former. In any case, if one is to step outside the GPD domain one 
should do so on the basis of some justification. 

 

Still in this connection, we should add that, because wave data most often exhibits a type I tail 
or a slightly lighter type III tail, studies comparing estimates from the GPD with estimates from 
the Weibull are often inconclusive as to what is the most appropriate tail/distribution (e.g. Van 
Vledder et al., 1993) since there are no statistically significant differences between the two 
models. However, a good reason for always considering the GPD for POT data and the GEV 
for AM data is that they have a substantial and solid theoretical basis stemming from 
asymptotic considerations. 

 

Initial-distribution approach 

Before the popularization of extreme value theory methodology for the extreme value analysis of 
wave data, a method that was often used to obtain return values estimates was the so-called 
Initial-distribution approach (Lapatoukhin et al., 2000 and Holthuijsen, 2007). It consists of fitting a 
distribution to the whole data (not only the extremes) and estimating the high percentiles of such a 
distribution. Two widely used distributions are the log-normal distribution and the Weibull 
distribution (see e.g. Guedes Soares and Henriques, 1996). 
 
The Initial-distribution approach is not advisable. The arguments against, which are well 
exposed by Ferreira and Guedes Soares (1998, 2000) and Anderson et al. (2001), are: 

• Due to dependence and nonstationarity, metocean time series violate the assumptions 
of independence and identity in distribution, which invalidates the application of the 
common statistical methods used (confidence intervals and tests) as well as the 
definition of return value. 

• There is no scientific justification for using one particular distribution to fit the data being 
considered  (e.g.: significant wave height data), and the usual goodness-of-fit 
diagnostics are not able (on the basis of realistic sample sizes and given the length of 
the required “prediction horizon”) to distinguish data with type I (exponential) tail, say, 
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from data with type II (heavier than exponential) tail. In contrast, if for example one 
concentrates on averages, maximum values, or excesses over a high threshold of very 
general variables, then statistical theory provides a scientific basis for the use of, 
respectively, the normal, GEV and generalized Pareto distributions. 

Estimation and diagnosis 

 
There are several numerical methods available for the estimation of the parameters of 
extreme value distributions. Most of them, for instance the methods of moments and of 
probability weighted moments (PWM), give explicit expressions for the parameter estimates. 
The maximum likelihood (ML) method tends to be the preferred estimation method since it is 
quite general and more flexible than other methods, especially when the number of 
parameters is increased as for instance when extending the extreme value approach to 
account for non-stationarity. However, in ordinary extreme value analyses like the ones we 
are concerned with in this report the flexibility provided by the ML method is not necessary, 
and for the range of tails typically found with wave data (not too heavy-tailed distributions) 
and for small to moderate sample sizes the method of PWM performs better than the ML 
method in the estimation of the GPD and GEV parameters (for details, see Hosking and 
Wallis, 1987, and Hosking et al., 1985). 

 

Historically, before computers were so widely used, methods based on probability paper and 
a visual or least-square linear fits were used to estimate the parameters of the distributions. 
However, such estimating techniques have their shortcomings, are no longer needed, and are 
not advisable as pointed out in WMO (1998, p. 107). 

 

When estimating it is not only important to obtain the (point) estimates, but also the 
uncertainty in the estimation. There are several methods for computing the confidence 
intervals (uncertainty) of the estimates (see e.g. Caires, 2007): 

• The standard approach is based on the fact that the estimates are typically 
asymptotically normally distributed with the parameter values as their mean and a 
certain covariance matrix (the covariance matrices corresponding to the ML and PWM 
estimates are given by Hosking and Wallis, 1987) and on the delta method (Ferguson, 
1996, p. 45)3. The (symmetric) confidence intervals obtained in this way will be called 
asymptotic intervals. 

• The asymptotic intervals are often unsatisfactory because the actual distribution of the 
ML estimates, even for moderate sample sizes, can be quite skewed. Thus, for the 
computation of confidence intervals based on maximum likelihood estimates it has been 
found (e.g. Coles, 2001) that the profile likelihood method is usually preferable, as it 
accounts better for the skewness of the distribution of the ML estimates. This method is 
based on the likelihood ratio and is valid under certain regularity conditions (see Coles, 
2001, and references therein for more details). The generally asymmetric confidence 
intervals obtained in such way are known as profile likelihood intervals. 

                                                     
3. The delta method allows the determination of the asymptotic distribution of estimators that are 

functions of other estimators whose distribution is known by means of a Taylor expansion. 
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• In some cases the delta method cannot be used to find explicit expressions for the 
variances of the estimators. In such cases, resampling methods like the bootstrap offer 
a simple and reliable alternative for estimating standard errors of estimators. 
Furthermore, the bootstrap method also allows one to compute percentile confidence 
intervals (Efron and Tibshirani.1993) which also work asymptotically and can be 
asymmetric. However, Tajvidi (2003) investigated the performance of several bootstrap 
methods for constructing confidence intervals for the parameters and quantiles of the 
GPD and concluded that none of the bootstrap methods gives satisfactory intervals for 
small sample sizes. In addition, Coles and Simiu (2003) state that “it is well known that 
bootstrap procedures are not consistent for extreme value problems—there is a 
tendency for the bootstrap sample to generate shorter tails than the true sample 
distribution”. Coles and Simiu (2003) propose an ad-hoc method to correct/adjust the 
bootstrap estimates which consists of applying a bias correction to the bootstrap 
parameter estimates assuring that the bootstrap sample mean coincide with the 
parameter estimates. We shall refer to such confidence intervals as adjusted bootstrap. 

 
Caires (2007) studied the coverage rate of confidence intervals of extreme value estimates 
based on the methods above and concluded the adjusted percentile bootstrap method 
generally produce the best confidence intervals from the point of view of coverage rates. 
Furthermore, that the quality of the coverage rate does not depend much on the bootstrap 
sample size; a bootstrap sample size of 1000 seems to be quite adequate for most practical 
purposes. Adjusted percentile bootstrap confidence intervals are to be given with the 
estimates presented in this report. 

The parameter, uλ , the yearly cluster rate, needed for the estimation of the return values, can 
be estimated by the average number of clusters/peak excesses per year. However, for yearly 
series with different numbers of observations (gaps) the estimation of uλ  should account for 
the gaps in the data (see Ferreira and Guedes Soares, 1998). uλ  should then be estimated by 

1

1
/

k

u i i
i

k N pλ −

=

= ∑ , (2.9)

where k is the number of years considered, i ip n n= , in  is the number of observations available in 
the ith year, Ni is the corresponding number of peak excesses, and n is the maximum number of 
observations in a yearly series. 
 
Model checking in extreme value analyses is usually done by means of probability plots, 
quantile plots and return level plots (see Coles, 2001). In this report we have chosen to 
illustrate the fits with return level plots. 

Climate change and variability 

In the methods described so far the extreme wave climate is assumed to be stationary. 
However, it is believed today that climate is not stationary, as the detection of both decadal 
variability and long term time trends in different climate variables, reported by several authors, 
indicates. Both the AM/GEV and POT/GPD approach can be extended to the non-stationary 
situation by making the parameters of the distributions functions of time (see Coles, 2001). An 
example of application to wave data of the non-stationary analogue of the AM/GEV approach 
is given in Wang and Swail (2006) and of the non-stationary analogue of the POT/GPD 
approach in Caires et al. (2006). 
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Worked examples 

Introduction 

To illustrate the EVA methodologies described can be applied, this chapter provides tow examples 
of EVA of significant wave height observations. The first example deals with deep water 
measurements and the second with shallow water data. 

NDBC deep water data 

Measurements by buoy 46005 of the NOAA database (National Data Buoy Center, 
http://seaboard.ndbc.noaa.gov/) have been considered, see Figure 3.1. The buoy is located 
at 46.050º N 131.020º W at the Pacific Ocean offshore the US Washington state, at a water 
depth of 2780 m. 

 
Figure 3.1 Left: Google Earth aerial view of the location of NDBC buoy 46005. Right: NDBC buoy 46005. 
 

This dataset was selected because its quality is quite high, it is freely available on the internet 
and the measurements of this particular buoy have been used in other studies (e.g. Anderson 
et al., 2001 and Holthuijsen, 2007). The buoy significant wave height measurements are 
available hourly from 20-minutes long records. These are assumed to describe sea states 
with durations of about three hours. The measurements have gone through some quality 
control by NOAA. It is however always recommended to perform some basic quality checks. 
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Data availability 

All available buoy 46005 measurements were downloaded from the NDBC site4 and analysed. 
Data is available from 1976 until 2008. However, there are several gaps in the data. Gaps in buoy 
measurements are common, and they can be due to the buoy not being operational for a long 
period, to data processing problems, to the loss of a single observation because of communication 
problems, etc. For instance, this particular buoy went adrift on 18/12/2008 and recovered as of 
13/3/2009. Table 3.1 presents the percentage of available hourly Hs measurements per month 
until 2008. Note that not only there are missing measurements as there are also repeated 
measurements (e.g. in July 1996 the percentage of available hourly data is 112%). 
 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
1976 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 20.56 32.93 33.19 33.20 
1977 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 21.24 31.94 29.44 
1978 30.78 31.10 32.53 32.50 32.26 29.86 32.39 32.26 32.64 33.06 33.33 33.20 
1979 32.93 32.74 33.20 33.33 33.20 33.19 33.06 34.41 33.06 33.06 33.33 33.33 
1980 32.66 33.05 33.20 33.06 32.26 29.31 82.80 99.73 98.89 100.00 100.00 99.60 
1981 97.58 98.21 98.79 99.72 99.46 99.86 99.73 100.00 98.19 96.77 99.86 98.52 
1982 97.98 99.85 98.12 99.44 99.46 100.00 99.73 99.06 99.31 96.24 86.25 48.52 
1983 96.91 99.40 99.87 98.19 99.73 98.75 100.00 99.87 99.72 99.87 99.72 84.95 
1984 97.85 98.99 98.79 100.00 99.33 99.44 99.19 99.06 99.44 99.33 98.89 98.92 
1985 57.39 0.00 0.00 0.00 26.34 33.19 95.43 95.03 40.56 46.10 0.00 0.00 
1986 0.00 70.98 99.06 99.72 99.06 99.58 99.73 99.19 90.83 0.00 0.00 69.09 
1987 97.58 99.85 99.60 99.17 82.93 0.00 34.68 99.19 94.58 99.73 99.72 99.73 
1988 98.66 99.43 99.73 99.58 99.73 99.86 99.87 99.06 35.00 33.06 5.42 52.69 
1989 98.52 99.85 99.33 99.31 98.52 97.78 99.19 98.25 99.31 99.60 99.44 98.52 
1990 98.66 99.85 99.46 99.17 56.18 33.06 33.06 16.53 0.00 0.00 0.00 0.00 
1991 75.54 99.40 99.46 99.72 99.19 99.58 99.60 98.39 99.17 99.06 99.31 99.19 
1992 98.12 98.56 97.85 99.58 99.19 99.58 98.92 98.39 98.06 97.85 96.94 98.25 
1993 96.64 89.58 45.03 0.00 0.00 0.00 9.14 70.56 63.61 99.60 98.75 99.73 
1994 98.25 95.39 98.39 99.72 99.06 99.44 93.95 98.12 97.78 98.66 99.17 99.60 
1995 98.12 99.11 99.73 98.89 99.73 99.31 99.06 99.60 96.25 98.92 98.19 98.52 
1996 86.56 93.82 83.47 101.67 97.72 98.33 111.96 6.45 0.00 0.00 0.00 0.00 
1997 59.68 40.03 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
1998 95.16 98.66 96.24 95.97 94.76 95.28 97.45 104.84 96.67 99.46 98.89 98.92 
1999 98.39 98.21 96.37 99.86 99.60 100.00 98.79 97.18 42.50 57.12 89.17 42.88 
2000 51.21 63.79 95.70 96.11 97.85 98.75 97.98 99.60 98.89 98.52 98.61 99.46 
2001 97.98 98.66 99.33 99.17 99.19 99.17 97.04 98.92 99.72 97.72 99.72 99.73 
2002 97.45 97.62 97.58 97.78 98.25 98.89 98.92 94.76 96.53 99.06 99.86 99.19 
2003 98.39 100.00 99.33 99.44 99.46 100.00 99.73 99.46 98.75 99.60 99.31 99.87 
2004 98.79 100.00 99.60 99.44 99.73 99.58 99.73 99.19 97.92 99.87 99.86 81.32 
2006 0.00 0.00 0.00 81.25 99.87 99.86 99.87 99.46 96.67 99.19 99.72 99.60 
2007 98.66 98.96 99.46 98.61 99.19 99.44 99.06 99.73 99.58 99.46 96.25 100.00 
2008 98.79 99.86 94.89 14.58 3.36 16.81 99.87 99.87 99.44 99.19 99.03 51.61 

Table 3.1 Monthly percentage of available hourly significant wave height measurements of buoy 46005 (all 
data). 

 
Figure 3.2 shows the time series of the available Hs and mean wave period (Tm) measurements. 
 

                                                     
4. http://www.ndbc.noaa.gov/station_history.php?station=46005 
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Figure 3.2 Time series of the available Hs and Tm measurements of buoy 46005. 
 
In order to ensure that only good quality data is considered in the EVA, the following quality 
checks were carried out: 
 
• Because our aim is to carry out an EVA of the data considering both POT and AM 

samples, we have discarded the years on which there are many missing measurements 
(only years for which at least half of the winter and autumn measurements were 
available were kept). Like this we try to avoid that the AM sample is contaminated by 
missing storms and the estimate of the rate of storms per year, uλ , in the POT method is 
also more forthright.  

• In order to have the same sampling variability in the considered data, years on which 
mostly only 3-hourly observations are available instead of hourly were discarded (1978-
1980).  

• Repeated measurements (i.e., having the same date) and measurements for which Hs < 
0.15 were discarded. 

• The time series was controlled for outliers: observations that deviate more than 7 times 
the standard deviation of the monthly data from its mean, or more than 3 times the 
standard deviation of the monthly data from the previous observation. There were no 
outliers identified. 

 
Table 3.2 presents the percentage of selected hourly Hs measurements per month resulting 
from the above described quality checks. The dismissed measurements are plotted in red in 
Figure 3.2. Following the quality controls the original dataset covering 33 years has been 
reduced to a consistent dataset of 21 years. This dataset provides a reliable basis for the 
EVA. Figure 3.3 shows the density scatter of the selected Hs and Tm measurements. Note 
that, due to the swell, Tm extreme values do not always correspond to Hs extreme values. In 
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fact, on 20/3/1999 there is a Tm storm peak of 17.08 seconds while the Hs peak is 6.54 m 
(about half of the maximum Hs storm peak). 

 
 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

1981 97.58 98.21 98.79 99.72 99.46 99.86 99.73 100.00 98.19 96.77 99.86 98.52 
1982 97.98 99.85 98.12 99.44 99.46 100.00 99.73 99.06 99.31 96.24 86.25 48.52 
1983 96.91 99.40 99.87 98.19 99.73 98.75 100.00 99.87 99.72 99.87 99.72 84.95 
1984 97.85 98.99 98.79 100.00 99.33 99.44 99.19 99.06 99.44 99.33 98.89 98.92 
1987 97.58 99.85 99.60 99.17 82.93 0.00 34.68 99.19 94.58 99.73 99.72 99.73 
1988 98.66 99.43 99.73 99.58 99.73 99.86 99.87 99.06 35.00 33.06 5.42 52.69 
1989 98.52 99.85 99.33 99.31 98.52 97.78 99.19 98.25 99.31 99.60 99.44 98.52 
1991 75.54 99.40 99.46 99.72 99.19 99.58 99.60 98.39 99.17 99.06 99.31 99.19 
1992 98.12 98.56 97.85 99.58 99.19 99.58 98.92 98.39 98.06 97.85 96.94 98.25 
1993 96.64 89.58 45.03 0.00 0.00 0.00 9.14 70.56 63.61 99.60 98.75 99.73 
1994 98.25 95.39 98.39 99.72 99.06 99.44 93.95 98.12 97.78 98.66 99.17 99.60 
1995 98.12 99.11 99.73 98.89 99.73 99.31 99.06 99.60 96.25 98.92 98.19 98.52 
1998 95.16 98.66 96.24 95.97 94.76 95.28 97.45 95.16 96.67 99.46 98.89 98.92 
1999 98.39 98.21 96.37 99.86 99.60 100.00 98.79 97.18 42.50 57.12 89.17 42.88 
2000 51.21 63.79 95.70 96.11 97.85 98.75 97.98 99.60 98.89 98.52 98.61 99.46 
2001 97.98 98.66 99.33 99.17 99.19 99.17 97.04 98.92 99.72 97.72 99.72 99.73 
2002 97.45 97.62 97.58 97.78 98.25 98.89 98.92 94.76 96.53 99.06 99.86 99.19 
2003 98.39 100.00 99.33 99.44 99.46 100.00 99.73 99.46 98.75 99.60 99.31 99.87 
2004 98.79 100.00 99.60 99.44 99.73 99.58 99.73 99.19 97.92 99.87 99.86 81.32 
2007 98.66 98.96 99.46 98.61 99.19 99.44 99.06 99.73 99.58 99.46 96.25 100.00 
2008 98.79 99.86 94.89 14.58 3.36 16.81 99.87 99.87 99.44 99.19 99.03 51.61 

 
Table 3.2 Monthly percentage of selected hourly significant wave height measurements of buoy 46005 

(after quality checks). 

 
Figure 3.3 Density scatter of the selected Hs and Tm measurements of buoy 46005. Note that both wind-sea 

and swell waves can be identified. 
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POT/GPD analysis 

We start by analysing the data using the POT/GPD approach. We have used the threshold 
stability property mentioned in Section 2.2.2 to choose the most appropriate threshold for selecting 
a sample of peak excesses and fitting the GPD to it. More precisely, we have looked for threshold 
values around which the estimate of the shape parameter and σ* seem to be stable before 
becoming rather variable due to reduction of the sample size. Figure 3.4 shows the threshold plot, 
i.e. the estimates of the shape parameter, of σ* and of the 1/100-yr return value as functions of the 
threshold, obtained with the Hs data. The threshold that we have chosen is marked by a vertical 
line. The return value plot of the corresponding GPD fit is shown in Figure 3.5 and the model 
parameter estimates are presented in Table 3.3 (2nd column). The estimation was done using the 
PWM method.  
 
The return value plot suggests that the GPD model is appropriate for the data. As can be seen in 
Table 3.3 (2nd column), the estimate of the shape parameter is negative but close to zero, which 
suggests that the data have a type I tail. In fact the confidence interval of the shape parameter 
estimates does not exclude any type of tail. 

 
Figure 3.4 Variation of the estimates of ξ, σ* and 1/100-yr HS return values of the GPD model using the 

PWM method with the threshold used to collect the Hs POT sample. 
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Figure 3.5 Return value plot of the GPD model fitted to the Hs data obtained with the PWM method (solid 

black line) and associated adjusted bootstrap 95% confidence intervals (dashed black lines). 
The POT data are represented by the asterisks. 

 
 POT/GPD POT/Exponential POT/Weibull AM/GEV AM/Gumbel 

Sample size 119 119 119 21 21 
u or μ̂  (m) 8.27 8.27 8.27 10.52  

(9.85, 11.24) 
10.29  

( 9.72, 10.93) 

ξ̂  -0.08  
(-0.30, 0.16) ─ ─ -0.35 

(-0.71, -0.03) 
─ 

σ̂%  or a)  (m) 1.40 
(1.04, 1.82) 

1.29  
(1.09, 1.52) 

1.32  
(1.11, 1.55) ─ ─ 

σ̂  (m) ─ ─ ─ 1.53  
(1.06, 1.95) 

1.36  
(1.00, 1.68) 

ĉ  ─ ─ 1.05  
(0.93, 1.22) ─ ─ 

100
ˆ

sH  (m) 15.23  
(12.98,18.66) 

16.47  
(15.18, 17.91) 

15.90  
(14.38, 17.77) 

14.04  
(12.78, 15.67) 

16.55  
(14.98, 18.19) 

Table 3.3 Parameter estimates and associated 95% confidence intervals of the models fitted to the Hs 
data. 

 
POT/Exponential analysis 

Given that the data may have a type I tail we have also fitted an exponential distribution to the 
POT data. In fact, the Anderson–Darling test (see, e.g., Stephens 1974) and the Gomes and van 
Montfort (1998) test do not reject the exponential distribution as model for the data. 
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Figure 3.6 Return value plot of the Exponential fit (solid black line) and associated adjusted bootstrap 95% 

confidence intervals (dashed black lines). The POT data are represented by the asterisks. 

 
Figure 3.7 Return value plot of the GPD (black) and Exponential (red) fits and associated adjusted 

bootstrap 95% confidence intervals (dashed lines). The POT data are represented by the 
asterisks. 

 
The return value plot of the corresponding exponential fit is shown in Figure 3.6 and the 
model’s parameter estimates are presented in Table 3.3 (3rd column). The two fits are 
presented in Figure 3.7. The return value estimates are higher than the estimates from the 
GPD, which was to be expected given that the estimated shape parameter of the GPD is 
less than 0, and the fit looks slightly worse (cf. Figure 3.7), but the estimates of the two 
models do not differ significantly (e.g. the confidence intervals of the GPD estimates 
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contain the point estimates of the exponential model). Note the smaller amplitude of the 
confidence intervals of the exponential estimates. This is not surprising, as the confidence 
intervals of the exponential model do not involve any uncertainty associated with the type 
of tail the data may have, since we have fixed the shape parameter to zero. 

 

POT/Weibull analysis 

We have also fitted the Weibull distribution of minima, Eq. (2.8), to the POT data. The return value 
plot of the corresponding Weibull fit is shown in Figure 3.8 and the model’s parameter estimates 
are presented in Table 3.3 (4th column). Since the exponential distribution is a special case of the 
Weibull distribution of minima, and since the exponential model provides a reasonable fit to the 
data, it is not surprising that the parameter estimates of the two models are so similar (e.g. the 
shape parameter estimate of the Weibull is 1.05, while a shape parameter of 1 yields the 
exponential distribution). However, the return values computed from the Weibull are a bit smaller 
than those of the exponential, and the fit of the former distribution looks somewhat better in the 
return value plot, which is understandable in view of the greater flexibility (i.e. greater ‘number of 
degrees of freedom’, namely two, relative to the exponential distribution which has only one 
parameter) of the Weibull distribution.  
 

 
Figure 3.8 Return value plot of the Weibull fit (solid black line) and associated adjusted bootstrap 95% 

confidence intervals (dashed black lines). The POT data are represented by the asterisks. 
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AM/GEV analysis 

 
Figure 3.9 Return value plot of the GEV model fit to the AM Hs data obtained with the PWM method (solid 

black line) and associated adjusted bootstrap 95% confidence intervals (dashed black lines). 
The AM data are represented by the asterisks. 

 
Figure 3.9 shows the return value plot of the GEV fit to the annual maxima of the Hs data. 
Table 3.3 (5th column) gives the corresponding parameter estimates. The estimation was 
done using the PWM method. Comparing these estimates with those obtained with the 
POT/GPD approach, one can conclude that the estimate of the GEV shape parameter is 
much smaller than that of the GPD, which may indicate that the GEV sample is not large 
enough to provide reliable estimates. In fact, looking at Figure 3.9 one can see that although 
the GEV fit to the AM data is rather good, the upper bound estimate of the GEV (red line in 
Figure 3.9) is even lower than the 1/100-yrs return value estimates of the GPD. In view of this 
observation, it would be advisable in this case to use only the results of the GPD model. 
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AM/Gumbel analysis 

 
Figure 3.10 Return value plot of the Gumbel fit (solid black line) and associated adjusted bootstrap 95% 

confidence intervals (dashed black lines). The AM data are represented by the asterisks. 
 
Given that the data may have a type I tail, even though this is not supported by the confidence 
intervals of GEV shape parameter estimates, we have also fitted a Gumbel distribution to the AM 
data. The return value plot of the corresponding Gumbel fit is shown in Figure 3.10 and the 
model’s parameter estimates are presented in Table 3.3 (last column). The Gumbel return value 
estimates are rather close to those of the exponential (cf. Figure 3.6 and Figure 3.10), which 
illustrates the compatibility of the two approaches provided the estimation of the tail is correct.  
 

Estimation method 

The POT and GPD estimates provided above were obtained using the PWM method as advised 
by Hosking and Wallis (1987) and Hosking et al. (1985). In order to compare these estimates 
with those of the ML method, we have also computed the ML estimates. Figure 3.11 shows the 
return value plots of the GPD ML fit to the POT data and the GEV ML fit to the AM data. Table 3.4 
compares the estimates of both methods. Comparing the estimates and the fits (cf. Figure 3.5 vs. 
Figure 3.11A and Figure 3.10 vs. Figure 3.11B), one can conclude that the ML fits seem less 
adequate and that the shape parameter (and consequently return value) estimates are lower than 
those of the PWM fits. These results support the recommendations of Hosking et al. to always 
use the PWM method for GPD or GEV estimation from relative short sets of data with not too 
heavy-tailed distributions. 
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   A      B 
Figure 3.11 Return value plots obtained using the ML method (solid black line) and associated adjusted 

bootstrap 95% confidence intervals (dashed black lines). A: GPD fit to the POT data. B: GEV 
model fit to the AM data. 

 
 POT/GPD 

PWM 
POT/GPD 

ML 
AM/GEV 

PWM 
AM/GEV 

ML 
Sample size 119 119 21 21 
u or μ̂  (m) 8.27 8.27 10.52  

(9.85, 11.24) 
10.57  

(8.52, 11.50) 

ξ̂  -0.08  
(-0.30, 0.16) 

-0.15  
(-0.33, 0.03) 

-0.35 
(-0.71, -0.03) 

-0.38 
(-1.15, -0.09) 

σ̂%  or σ̂  (m) 1.40  
(1.04, 1.82) 

1.49  
(1.11, 1.93) 

1.53  
(1.06, 1.95) 

1.46  
(0.59, 2.46) 

100
ˆ

sH  (m) 15.23  
(12.98,18.66) 

14.36  
(12.81,16.57) 

14.04  
(12.78, 15.67) 

13.72 
(10.57, 16.76) 

Table 3.4 Parameter estimates using the PWM and ML methods and associated adjusted bootstrap 95% 
confidence intervals. 

 
Stationarity 

Given that the analyses reported above were carried out assuming stationarity of the Hs extremes, 
we have tried to test the validity of that assumption. Figure 3.12 shows linear fits to the Hs annual 
means, POT and AM data. Although with some scatter, in all cases the data shows a positive 
linear trend of 0.72, 0.57 and 4.2 cm per year, respectively.  
 

We have therefore checked whether it would be more appropriate to use the non-stationary 
analogues of the POT/GPD and AM/GEV to analyse the data (cf. Caires et al., 2006). Models 
with linear trends in the location parameters were considered, and in both cases the results of 
the likelihood ratio test was that the trends were not significant and therefore that stationary 
models are good models for the data. 
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Figure 3.12 Annual trends in the Hs measurements of buoy 46005 
 
North Sea shallow water data 

The Dutch Ministry of Transport, Public Works and Water Management (VenW) maintains a 
network of nine wave monitoring stations offshore the Netherlands. The buoy locations are given 
in Figure 3.13. Time series of hourly significant wave height data are available from 1979 to 2002 
from http://www.golfklimaat.nl/. Each hourly measurement is computed from a 20-minutes long 
record of the sea surface elevation, and is assumed to be representative of a 3-hour long sea 
state. When compiling the measured sequences missing information is filled-in using estimates 
made using a control and validation programme. We performed further quality checks on the data 
and the conclusion was that the quality of the data is good. There were no outliers identified and 
the data coverage is close to 100% for the full period 1970-2002. 
 
The measurements by the Schiermonnikoog noord (SON) buoy are analysed here. The buoy is 
located at 53º35'44" N and 06º10'00" E in the North Sea, at a water depth of 19 m. Therefore, 
contrary to the 45006 buoy measurements, these are in shallow waters. 
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Figure 3.13 Measuring stations along the Dutch coast. 
 

POT/GPD analysis 

Again, we start by analysing the data using the POT/GPD approach. Figure 3.14 shows the 
threshold plot obtained with the SON Hs data. The threshold that we have chosen is marked by a 
vertical line. The return value plot of the corresponding GPD fit is shown in Figure 3.15 and the 
model parameter estimates are presented in Table 3.5 (2nd column). The estimation was done 
using the PWM method.  
 
The return value plot suggests that the GPD model is appropriate for the data. The estimate of the 
shape parameter is negative, which suggests that the data have a type III tail. However, the 
confidence interval of the shape parameter estimates does not exclude a type I tail. The shape 
parameter estimate for this data (-0.13) is much smaller than that for the deep water data (-0.07), 
which is not surprising since waves in shallow waters are depth limited. The upper-limit estimate 
(c.f. Eq. (2.4)) for this data is 11.4 m, whereas for the deep water data was 22 m. 
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Figure 3.14 Variation of the estimates of ξ, σ* and 1/100-yr HS return values of the GPD model using the 

PWM method with the threshold used to collect the Hs POT sample. 
 

 
Figure 3.15 Return value plot of the GPD model fitted to the Hs data obtained with the PWM method (solid 

black line) and associated adjusted bootstrap 95% confidence intervals (dashed black lines). 
The POT data are represented by the asterisks. 
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 POT/GPD POT/Exponential POT/Weibull AM/GEV AM/Gumbel 

Sample size 108 108 108 24 24 
u or μ̂  (m) 4.50 4.50 4.50 5.82 

(5.42, 6.27) 
5.75 

(5.40, 6.13) 

ξ̂  -0.13  
(-0.37, 0.09) ─ ─ -0.17 

(-0.50, 0.13) 
─ 

σ̂%  or a)  (m) 0.96  
(0.70, 1.27) 

0.86  
(0.71, 1.01) 

0.88  
(0.73, 1.05) ─ ─ 

σ̂  (m) ─ ─ ─ 0.92  
(0.61, 1.21) 

0.84 
(0.62, 1.04) 

ĉ  ─ ─ 1.08  
(0.93, 1.27) ─ ─ 

100
ˆ

sH  (m) 8.63  
(7.24,10.79) 

9.74  
(8.87, 10.71) 

9.21  
(8.23, 10.46) 

8.74  
(7.83, 10.02) 

9.61 
(8.52, 10.65) 

Table 3.5 Parameter estimates and associated 95% confidence intervals. 
 

POT/Exponential analysis 

The Anderson–Darling test (see, e.g., Stephens 1974) and the Gomes and van Montfort 
(1998) test do not reject the exponential distribution as model for the data. We have 
therefore also fitted an exponential distribution to the POT data. The return value plot of 
the corresponding exponential fit is shown in Figure 3.16 and the model’s parameter 
estimates are presented in Table 3.5 (3rd column). Again, the return value estimates are 
higher than the estimates from the GPD and the fit looks reasonable. 

 

 
Figure 3.16 Return value plot of the Exponential fit (solid black line) and associated adjusted bootstrap 95% 

confidence intervals (dashed black lines). The POT data are represented by the asterisks. 
 

POT/Weibull analysis 

We have also fitted the Weibull distribution of minima, Eq. (2.8), to the POT data. The return value 
plot of the corresponding Weibull fit is shown in Figure 3.17 and the model’s parameter estimates 
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are presented in Table 3.5 (4th column). Again the Weibull fit looks better than the exponential fit. 
The shape parameter estimate of the Weibull is 1.08, which is again very close to the exponential 
shape parameter yielding the exponential distribution.  

 
Figure 3.17 Return value plot of the Weibull fit (solid black line) and associated adjusted bootstrap 95% 

confidence intervals (dashed black lines). The POT data are represented by the asterisks. 
 

AM/GEV analysis 

Figure 3.18 shows the return value plot of the GEV fit to the annual maxima of the Hs data. 
Table 3.5 (5th column) gives the corresponding parameter estimates. The estimation was 
done using the PWM method. Comparing these estimates with those obtained with the 
POT/GPD approach, one can conclude that the estimate of the GEV model are close to those 
of the GPD, which gives confidence in the estimates of both models. 
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Figure 3.18 Return value plot of the GEV model fit to the AM Hs data obtained with the PWM method (solid 

black line) and associated adjusted bootstrap 95% confidence intervals (dashed black lines). 
The AM data are represented by the asterisks. 

 
AM/Gumbel analysis 

 
Figure 3.19 Return value plot of the Gumbel fit (solid black line) and associated adjusted bootstrap 95% 

confidence intervals (dashed black lines). The AM data are represented by the asterisks. 
 
Figure 3.19 shows the return value plot of the Gumbel fit to the annual maxima of the Hs data. 
Table 3.5 (last column) gives the corresponding parameter estimates. Again, the Gumbel return 
value estimates are rather close to those of the exponential. 
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Estimation method 

Figure 3.20 shows the return value plots of the GPD ML fit to the POT data and the GEV ML fit to 
the AM data. Table 3.4 compares the estimates of both methods. Comparing the estimates and 
the fits, one can conclude that the ML fits are worst and the shape parameter (and consequently 
the return value) estimates are lower than those of the PWM fits. The differences in the results of 
the two methods are, however, smaller than those computed for the deep water data, that is 
probably because the sample sizes of the shallow water data are larger. 

 
Figure 3.20 Return value plots obtained using the ML method (solid black line) and associated adjusted 

bootstrap 95% confidence intervals (dashed black lines). Left: GPD fit to the POT data. Right: 
GEV model fit to the AM data. 

 
 POT/GPD 

PWM 
POT/GPD 

ML 
AM/GEV 

PWM 
AM/GEV 

ML 
Sample size 108 108 24 24 
u or μ̂  (m) 4.50 4.50 5.82 

(5.42, 6.27) 
5.86 

(5.30, 6.42) 

ξ̂  -0.12  
(-0.37, 0.09) 

-0.14  
(-0.30, 0.03) 

-0.17 
(-0.50, 0.13) 

-0.24 
(-1.20, 0.20) 

σ̂%  or σ̂  (m) 0.96  
(0.70, 1.27) 

0.98  
(0.74, 1.25) 

0.92  
(0.61, 1.21) 

0.90  
(0.57, 1.44) 

100
ˆ

sH  (m) 8.63  
(7.24,10.79) 

8.51  
(7.59,9.74) 

8.74  
(7.83, 10.02) 

8.35  
(6.62, 10.35) 

Table 3.6 Parameter estimates using the PWM and ML methods and associated adjusted bootstrap 95% 
confidence intervals. 

Stationarity 

Figure 3.21 shows linear fits to the Hs annual means, POT and AM data. The estimated linear 
trends are of -0.09, 0.81 and 3.2 cm per year, respectively.  
 
As done for the deep water data, we have checked whether it would be more appropriate to 
use the non-stationary analogues of the POT/GPD and AM/GEV to analyse the SON data. 
Models with linear trends in the location parameters were considered, and again in both 
cases the results of the likelihood ratio test was that the trends were not significant. The 
stationary model is therefore a good model for the data. 
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Figure 3.21 Annual trends in the Hs measurements of the SON buoy. 
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Software packages 

In the last years, mostly the last decade, there has been an increased use of the extreme value 
methodology and an associated increased offer of software packages to perform extreme value 
analysis (see e.g. Stephenson and Gilleland, 2006). A lot of the available packages target financial 
instead of environmental data. Without the pretence of covering all that is available, Table 4.1 
gives an overview of available extreme value analysis software packages directly suitable for the 
analysis of wave data. Some have command line (routine) and/or Graphical User Interfaces (GUI). 
GUIs make packages very easy to use, but when not accompanied by command line / routine 
options provide little flexibility for more experienced users. 
 
Package name and reference Programming 

language 
Avail. Interface 

EVIM 
http://www.bilkent.edu.tr/%7Efaruk/evim.htm  

MATLAB free 
software 

command 
line 

EXTREMES 
http://mistis.inrialpes.fr/software/EXTREMES/accueil.html 

C++ with  a 
MATLAB GUI 

free 
software 

GUI 

extRemes 
http://www.isse.ucar.edu/extremevalues/evtk.html 
Uses ismev 

R free 
software 

command 
line and 
GUI 

ismev 
http://cran.r-project.org/web/packages/ismev/index.html 
(The R routines are based on the S-Plus 
(http://www.insightful.com/products/splus/) routines of 
Coles, 2001) 

S-Plus and R free 
software 

command 
line 

ORCA 
http://www.wldelft.nl/soft/chess/orca/index.html  

MATLAB commercial command 
line and 
GUI 

Statistics of Extremes 
http://lstat.kuleuven.be/Wiley/index.html  

S-Plus and 
FORTRAN 

free 
software 

command 
line 

WAFO 
http://www.maths.lth.se/matstat/wafo/about.html  

MATLAB free 
software 

command 
line 

Xtremes 
http://www.xtremes.de/xtremes/  

Pascal commercial GUI 

Table 4.1 Software packages available for EVA. Please note that web addresses may be liable to change. 
 
Although a lot of researchers, consultants and engineers mostly do their analysis in FORTRAN, 
most available packages of EVA routines are in MATLAB 
(http://www.mathworks.com/products/matlab/) or R (http://www.r-project.org/). FORTRAN seem to 
prefer to develop their own routines instead of using packages. For instance, the FORTRAN 
routines used for GPD and GEV fits in the popular climate explorer site (http://climexp.knmi.nl) are 
freely available (http://climexp.knmi.nl/source/fortran.zip), but the available routine were develop 
solely with the goal of own use and not for comprehensive usage by others. 
 
The analysis presented here were carried out using the MATLAB tool ORCA (“metOcean data 
tRansformation, Classification and Analysis tool”).  
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Recommendations 

Extreme value analysis 

 
When carrying out an extreme value analysis of significant wave height data we suggest that the 
following steps are followed: 
 
1. The selection of the samples of significant wave height POT and/or AM, paying attention 

to declustering, so that the data can be considered independent. 
2. The selection of an extreme value distribution as a statistical model for the data produced 

in the first step. According to theory the generalized Pareto distribution (GPD) should be 
selected when the sample is collected by means of the POT method, while in the case of 
the AM method a generalized extreme value (GEV) distribution should be chosen. 

3. The selection of a method to estimate the unknown parameters of the distribution chosen 
in Step 2. When possible, the PWM method is preferable.  

4. When doing a POT/GPD analysis always produce threshold plots to guide the threshold 
choice. 

5. On the basis of the estimated parameters (and thus the estimated distribution) the 
extreme values corresponding to one or more prescribed return period(s) can be 
estimated. 

6. The selection of a method to quantify the uncertainty in the estimates of the distribution’s 
parameters and in the associated return values. The uncertainty in the parameters and 
return values is usually quantified by a confidence interval of some significance level 
(here 95%). Adjusted bootstrap confidence intervals are considered optimal. 

 
Furthermore, we have the following recommendations: 
 
• Before carrying out an extreme value analysis, a rigorous data quality analysis should 

always be carried out. 
• When the availability of data is limited give preference to a POT/GPD analysis instead 

of AM/GEV analysis. Doing both would help in diagnosis. 
• If one is to choose a distribution other than GPD or GEV one should do so on the basis 

of some justification. 
• The initial-distribution approach is not recommended. 
• Always check that whether the climate can be assumed stationary. 
 
Further aspects 

In these analyses only omni-directional significant wave height data were considered. However, 
the wave period and direction also plays an important role in wave loads. Caires and van Gent 
(2008) have studied the incorporation of wave period data in the extreme value analysis of wave 
data. A important aspect when analysing the mean wave period data is to establish whether the 
overall (wind sea and swell) are of interest or only those associated with significant wave height 
extremes (wind sea). Figure 3.3 shows the type of relations between the significant wave height 
and the mean wave period in a given region. When doing EVA per directional sector it is important 
to properly divide the data into sectors. A sector should not consider only a proportion of a given 
population, since that will only increase the uncertainty. Furthermore, two apart and equally 
important, in terms of extremes, populations should not be mixed within a sector.  
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Furthermore, often individual parameters within a sea state are also of interest, such as the 
maximal individual wave height. In deep waters, these can be computed using the Rayleigh 
distribution and in shallow water using the Battjes and Groenendijk distribution (see Battjes and 
Groenendijk, 2000). 
 
The data considered here were regularly sampled. That is not the case when considering satellite 
data, which makes the extreme value analyses of the data not straightforward. Anderson et al. 
(2001) provide suggestions for how to approach the problem of irregularly sampled data. 
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