海洋概報

平成 18 年第 3 号

オホーツク海南西海域海流観測

観測期間:平成18年9月6日~9月8日

第一管区海上保安本部

1 調査概要

1.1 目的

我が国の管轄海域の海況把握を行うため、巡視船により海流観測及び水温観測を実施すると共 に、海難救助等における漂流予測精度向上のための基礎資料となる流況の収集・解析を行う。

1.2 調查区域

オホーツク海南西海域 (図1のとおり)

1.3 調査期間及び経過概要

(1) 調査期間

平成18年9月6日から9月8日までの3日間

(2) 経過概要

平成18年9月6日: 紋別出港、音波ログによる海流観測、XBT 水温測定、採水 平成18年9月7日: 音波ログによる海流観測、XBT 水温測定、採水 平成18年9月8日: 音波ログによる海流観測、稚内入港観

1.4 調查方法

調査方法等は以下のとおり.

(1) 海流観測

機 種:古野電気株式会社製 音波ログ (CI-20-H)

観 測 層:海面下 10・30・50m の 3 層

(2) 水温観測

機 種:鶴見精機株式会社製 投下式水温深度測定装置 (XBT MK-130) 観 測 層:海底までの連続水温 (プローブは T-6(460m) を使用)

1.5 使用した船舶又は航空機の種別又は名称

紋別海上保安部所属 巡視船「そらち」

3 調査結果

流況を図 2.1 ~ 図 2.3 に,水温水平分布を図 3.1 ~ 図 3.7,鉛直分布を図 4.1 から図 4.3 に示す. また,表 1.1 及び 1.2 に,XBT・ADCP 観測成果を示す. 2.1 流況

距岸 15~20 海里内に海岸線に平行な南東方向への宗谷暖流があり, 10m 層での流速は 1.5~2.0knot 程度である.

宗谷暖流沖合いの流れは 0.5knot 以下の弱い流れである.また, 音稲府岬沖 10m 層では低気圧 性の流れがある.

2.2 水温

宗谷暖流のフロント表層付近には,冷水域が帯状に分布している.

宗谷暖流域と沖合の水域では,明瞭な相違を示しており,20~30m 層では7~15 台の大きな 水温傾度をなしフロントを形成している.10m(10 以下),20m(3 以下)及び30m(0 以下)の 各層では,音稲府岬沖に中心を持つ冷水域がある.また,50m 層以浅でが冷水域が知床半島北岸に 接近している.

また,50m 層において距岸25~30 海里以遠はオホーツク海中層水の分布となっている.

2.3 水位差^{*1}

宗谷暖流の駆動力として,日本海とオホーツク海の水位差がその要因として考えられており,水 位差と宗谷暖流には密接な関係があることから,図5に稚内 紋別間の水位差*²を示す.

2月中旬にかけては概ね負の変動であったが,以後一時的に負の変動を見せたが正の変動に転じた.5月中旬以降は概ね12cm前後の水位差で推移している.

参考文献

[1] 日本海洋学会沿岸海洋研究部会編,『日本全国沿岸海洋誌』(東海大学出版会,1985年)

[2] 科学技術庁研究調整局、『オホーツク海に関する総合研究報告』(科学技術庁,1981年)

[3] 青田昌秋,『宗谷暖流域の海況変動』(沿岸研究ノート,1984年)

^{*1} 稚内の潮位・日平均気圧については,気象庁 WEB サイト [http://www.jma.go.jp] から取得した.

^{*2} 水位データはタイドキラーフィルタ(花輪・三寺,1985)を掛け潮汐成分を除去した後,気圧変化に伴う海面の昇降の影響を除くため気圧補正を施した(潮位の基準はT.P.上).

図 2.1: 流 況 図 (10m 層)

図 2.3: 流 況 図 (50m 層)

図 3.2: 10m 層水温水平分布図

図 3.4: 30m 層水温水平分布図

図 3.6: 100m 層水温水平分布図

図 3.7: 200m 層水温水平分布図

図 4.1: 水温鉛直断面分布 (st.07-st.36)

図 4.3: 水温鉛直断面分布 (st.28-st.31)

CURRENT	Dir. Vel(kt)	295 0.1	101 1.5	202 1.0	091 2.0	138 0.6	303 0.9	014 0.1	032 0.1	262 0.1	105 0.3	044 0.4	100 0.9	101	246 0.3	235 0.2	093 0.1	325 0.4	262 0.5	238 0.1	139 0.8	103 0.5	077 0.5	
	SL (m) [6	21	38	22	6	19	19	14	ω	6	œ	α	þ	13	12	11	10	8	10	26	28	œ	
	125	1.6	I	I	5.3	1.9	8.1	6.7	4.7	0.5	0.7	3.8	° U	20	-0.1	0.4	0.3	-0.4	-0.3	5.8	I	I	5.1	
	100 450	1.6	1 1	1 1	- 7.8	1.6	1.7 9.0	7.2	4.8 4.8	- 0 -	4. O. 4	4.0	1.3	1.4	0.5	- 0.2	0.0	-0.6	0.0	3.8	1 1	1 1	5.3	I
	75	1.5	1 1	1 1	- 8.8	3.4	1.6 10.5	7.9	2.4 7.1 0	9 6 ,		1.1 4.6	1.2	1.2	 	0.0	0.1	-0.9	0.3	5.3	1 1	1 1	3.7	I
(C)	50 350	2.1	- 12.2	- 17.0	- 14.8	1.7 3.9	1.8 11.1	, 00 0 0.0	2.9 10.3	0.0 12.3	0.6	0.9 5.4	1.0	1.0	0.8	0.0 8.0	2.1	-0.3	- 0.4	4.4	- 16.6	- 17.5	2.2	I
Temp. (de	30 30	2.3	- 13.2	- 20.1	- 16.1	1.4 4.6	1.7 17.1	9.1	13.9 5.5	12.7	2.7 2.7	0.5 4.3	0.8	0.8	4.7	2.6	3.3	2.0	- 0.9	- 7.4	- 16.9	- 18.6	-0.1	I
	20 250	6.9	0.8 18.8	- 20.1	- 17.9	0.8 7.3	2.3 19.4	11.4	3.4 16.6 2.7	2.7 13.3 0.5	0.5 8.1	0.4 4.2	1.4 5.3	0.6	8.6 0.8	7.7	2.6	4.8	- 3.4	4.6	- 17.6	- 18.8	2.4	I
	10	16.0	0.8 19.1	- 20.3	- 18.1	3.8 17.0	2.4 19.5	14.8	4.1 19.9 2.0	2.3 16.7	0.1 17.7	0.2 14.1	3.4 14 8	0.4	17.9 0.4	17.3	0.0 17.7	- 17.1	- 11.4	- 16.2	- 17.9	- 18.8	- 13.2	I
	0	16.9	0.8 19.3	- 20.4	- 18.1	5.0 17.8	2.9 19.7	0.0 15.9	0.0 20.3	3.2 18.2	3.3 18.1	0.6 17.7	3.7 17.8	0.3	17.9 0.0	17.3	17.7	- 17.4	-0.4 16.4	0.0 16.6	5.4 17.9	- 18.8	- 17.4	I
	Air Air	17.0	17.0	17.9	17.9	17.2	17.8	17.6	19.6	18.1	16.9	16.9	171		17.5	17.3	17.9	17.9	17.8	16.7	17.2	17.9	17.0	
		1013.0	1013.0	1012.5	1012.5	1013.0	1014.0	1015.0	1015.5	1016.5	1016.5	1016.0	0120	2	1016.0	1016.5	1016.0	1016.0	1015.0	1015.0	1016.5	1016.5	1016.5	
	. A	3	ę	5	5	7	5	-	-	5	-	5	ç	5	e	e	5	5	ę	4	7	5	ę	
	WAVE	WNW	MNW	z	z	z	z	z	z	z	z	ш	NINN		ш	ESE	s	SE	SSE	SSE	SSE	SE	SE	
		3	з	2	2	2	2	2	с	ы	2	4	~	٢	4	4	4	8	9	9	4	5	5	
		WNW	WNW	MN	z	z	z	z	z	z	z	ш	NINIM		ESE	ESE	SE	ESE	SSE	SSE	SSE	SE	SE	
	LONG.(E)	144-01.1	144-03.5	144-22.8	144–29.2	144-40.0	144-49.2	145-00.0	145-08.3	145-20.0	145-00.1	144-50.0	111-10.8		144-30.0	144-39.9	144-20.2	144-09.9	144-00.1	143-50.3	143-40.6	143-19.9	143-30.1	
	LAT.(N)	44-20.1	44-13.0	44-04.3	44-09.8	44-19.8	44-05.1	44-12.9	44-21.8	44-30.0	44-40.0	44-30.0	44-30.9	1.00	44-40.0	44-49.7	44-59.9	44-50.3	44-40.3	44-30.4	44-20.2	44-30.0	44-40.1	
	TIME	1241	1314	1417	1447	1531	1632	1714	1809	1905	2014	2122	1150	7011	2350	0035	0140	0227	0315	0401	0447	0615	0707	
	DATE	20060906	20060906	20060906	20060906	20060906	20060906	20060906	20060906	20060906	20060906	20060906	PUDEDADE	000007	20060906	20060907	20060907	20060907	20060907	20060907	20060907	20060907	20060907	
_	st. No		2	r	4	5	9	7	œ	6	10	1	10	1	13	14	15	16	17	18	19	20	21	

表 1.1: XBT, ADCP 観測成果表

ENT	Vel(kt)	0.2	0.4	0.2	0.7	1.0	1.1	1.4	1.0	0.4	0.2	1.6	1.9	1.4	3.0	
CURR	Dir.	353	351	138	175	157	137	148	133	120	139	133	153	134	137	
	SL (m)	10	٢	œ	6	80	12	12	12	12	12	6	7	I	œ	
	125	1.4	1.1	4.2	4.9	I	I	I	4.4	0.8	I	I	I	I	I	
	100 450	1.2	0.4	1.8	2.5	1 1	1 1	- 10.5	1.2	-0.5	-0.6	1 1	1 1			1
	75 400	-0.2 -	-0.1	3.6	- 6.1	- 16.4	1 1	- 12.9	3.8	, [-	-0.1	9.7	1 1		1	1
egC)	50 350	-0.3	0.2	, ∷	- 8.2	- 17.7	- 16.9	- 14.1	8.1	-0.6	-0.8	9.8	- 19.5		11.5	1
Temp. (d	30 300	0.8	6.0	0.0	9.0	- 17.8	- 18.8	- 14.8	6.5	1.2	0.6	6.6	- 19.5	- 18.0	12.0	1
:	20 250	5.1	3.6	2.4	2.8	- 18.2	- 19.8	- 15.0	7.8	6.2	5.5	10.9	- 19.6	- 18.0	12.8	1
:	10 200	15.6 -	13.1	- 13.9	9.0	- 18.2	- 20.3	- 15.3	- 11.8	- 18.3	17.1	15.6	- 20.0	- 18.0	18.7	1
	0 150	15.9 0.0	15.9	2.9 17.1	- 16.6	- 18.4	- 20.3	- 18.3	- 15.9	- 18.3	17.4	16.7	- 20.1	- 18.0	21.0	1
	Air egC)	16.1	16.3	16.9	17.9	17.9	18.2	19.2	18.0	18.0	18.2	19.1	19.1	18.5	16.8	
	NOS , Pa) (d	11 7.5	117.5	16.5	16.5	16.5	016.5	016.0	016.5	016.5	17.0	117.5	17.5	18.5	019.0	
	ATI ss (h	3 10	3 10	3 10	3 10	3 10	2 10	3 10	3 10	3 10	3 10	1 10	2 10	2 10	2 10	
	WAVE Dir. Cla:	SSE	SSE	SE	SE	SE	SSE	SSE	SSE	SSE	S	S	SE	SE	SE	
	ass	5	4	4	4	4	с	4	4	4	4	2	3	ę	e	
	WIND Dir. Cl	SSE	SSE	SE	SE	SE	SSE	SSE	SSE	SSE	S	S	SE	SE	SE	
	-ONG.(E)	143-49.7	143-30.4	143-20.0	143-10.1	143-02.2	142-45.0	142-50.0	142-59.9	143-09.5	142-49.9	142-40.0	142-31.1	142-20.1	142-20.1	
	LAT.(N) I	44-59.9	45-09.8	44-59.9	44-50.0	44-42.2	44-54.8	44-59.8	45-0.98	45-19.8	45-29.8	45-19.8	45-10.8	45-19.9	45-33.0	
	TIME (JST)	0845	0949	1054	1139	1221	1330	1354	1439	1522	1627	1712	1752	1842	1937	
	DATE (20060907	20060907	20060907	20060907	20060907	20060907	20060907	20060907	20060907	20060907	20060907	20060907	20060907	20060907	
	st. No	23	24	25	26	27	28	29	30	31	32	33	34	35	36	

図 5: 稚内-紋別間の水位差変化 (2006.01 - 08))